博碩士論文 110226065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:146 、訪客IP:3.144.17.45
姓名 程素慧(Su-Hui Cheng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 探討黑爾弗里希形變對膽固醇液晶之穿透及反射頻譜調制
(Investigations of transmissive and reflective spectra of cholesteric liquid crystals modulated by Helfrich deformation)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用
★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究
★ 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究★ 藍相液晶摻雜旋性聚合物之表面穩定效應之研究
★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究★ 離子性材料對向列型液晶自發性配向及其應用之研究
★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器
★ 低操作電壓高分子分散型液晶及其應用之研究★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性
★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡★ 光控及電控散射型/吸收型液晶光閥之研究
★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈★ 電控及光控膽固醇液晶光閥特性與結構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 本論文研究主要探討黑爾弗里希形變(Helfrich deformation)的膽固醇液晶之頻譜特徵及其原因,分為兩部分主題,第一部分為分析在不同物理參數下,對Helfrich deformation的膽固醇液晶之影響,藉由量測外加電壓下的穿透頻譜及觀察偏光顯微鏡下的結構,確立各條件下Helfrich deformation出現之電壓值,並比較各條件之反射波段變化,討論其差異及原因。在此部分研究透過改變液晶盒厚度、配向膜種類及濃度配比參數,發現摻雜液晶二聚體的膽固醇液晶,可降低Helfrich deformation出現之電壓值,且各條件之穿透頻譜皆具有頻譜拓寬效果,並且水平配向可增強此效果。本論文第二部分主題為分析Helfrich deformation的膽固醇液晶之頻譜特徵,此頻譜特徵與以往膽固醇液晶不同,其反射波段於穿透頻譜及反射頻譜不同,本論文對此現象的推論為此結構中產生類似波導作用,透過貝里曼4 × 4矩陣模擬以佐證,並將膽固醇液晶結構分為三層結構進行討論,分別為中間層的Helfrich deformation結構與接近基板的兩層邊界層一般膽固醇液晶平面態結構,從模擬頻譜圖了解各層結構間發生的穿透及反射,而在邊界層與中間層間反射光因Helfrich deformation的結構特性,發生來回反射的現象,使Helfrich deformation的膽固醇液晶之反射波段,在反射頻譜與穿透頻譜不同。
摘要(英) In this thesis, we mainly investigate the spectral characteristics and their root causes of cholesteric liquid crystals (CLCs) with Helfrich deformation. The research topic includes the following two parts. In the first part, we analyze the influences of different physical parameters on the CLCs with Helfrich deformation. According to the measured transmissive spectra of the CLCs applied with electric fields and the observed images under a polarized optical microscopy, the threshold voltage of the Helfrich deformation in each condition can be confirmed. In addition, we also elucidate the differences between them and the corresponding reasons according to the changes of the reflection bands. Furthermore, by varying the cell gap, alignment film, and concentration of the adopted materials, it is found that the CLCs doped with liquid crystal dimer have a lower threshold voltage of the Helfrich deformation, and the transmission spectrum of each condition possesses the feature of broadening the reflection band width. Besides, the homogenous alignment layer can enhance this effect. In the second part, we analyze the spectral characteristics of CLCs with Helfrich deformation, which differ from those of the previous CLCs. The obtained wavelength bands of the transmission spectra and the reflection spectra are different. The cause of this phenomenon can be verified by the Berreman 4 × 4 matrix simulation, and be concluded to be similar to waveguide effect due to such structures. The CLC structures are divided into three layers for simple discussion, namely the middle layer with the Helfrich deformation structure and the boundary layers closed to the substrates with general planar textures of CLCs. The transmission and reflection between the layers of the structures can be clarified from the simulated spectra. Due to the structural characteristics of the Helfrich deformation, the reflected light is reflected back and forth between the boundary layers and the middle layer, so the wavelength bands of the measured reflection and transmission spectra of CLCs with Helfrich deformation are different.
關鍵字(中) ★ 黑爾弗里希形變
★ 貝里曼矩陣
★ 帶寬變化
關鍵字(英) ★ Helfrich deformation
★ Berreman 4 × 4 matrix
★ bandwidth variation
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 xi
符號說明 xii
第一章 緒論 1
§1-1 前言 1
§1-2 研究動機 1
§1-3 論文架構 2
第二章 液晶簡介 4
§2-1 液晶簡介 4
§2-1-1 液晶歷史[7][8] 4
§2-1-2 液晶定義 4
§2-2 液晶分類 5
§2-2-1 向列型液晶(Nematics)[9] 6
§2-2-2 層列型液晶(Smectics) 7
§2-2-3 膽固醇液晶(Cholesterics) [13][14][15][16] 9
§2-3 液晶光電特性 11
§2-3-1 光學異向性(Optical anisotropy) 11
§2-3-2 介電異向性(Dielectric anisotropy) 15
§2-3-3 液晶連續彈性體理論[19] (Continuum theory) 17
§2-3-4 溫度對向列型液晶的影響 18
§2-3-5 Fréedericksz transition 18
第三章 理論介紹 20
§3-1 膽固醇液晶相關理論 20
§3-1-1 膽固醇液晶排列結構 20
§3-1-2 膽固醇液晶結構切換[22][24] 23
§3-1-3 影響膽固醇液晶螺距的外在因素 26
§3-2 Helfrich deformation[27] 28
§3-3 貝里曼矩陣(Berreman 4 × 4 matrix)模擬[30] 29
§3-4 液晶二聚體(Liquid crystal dimer) 34
§3-5 相關文獻回顧 35
第四章 實驗方法與製程 39
§4-1 材料介紹 39
§4-1-1 雙頻液晶HEF951800-100 39
§4-1-2 手性分子S811 40
§4-1-3 彎曲型分子CB7CB 40
§4-2 實驗樣品製作 40
§4-2-1 液晶材料配置 40
§4-2-2 ITO基板裁切及清洗 41
§4-2-3 基板表面配向處理(水平配向) 41
§4-2-4 液晶空盒製作 42
§4-2-5 液晶盒厚度量測 42
§4-2-6 注入液晶 44
§4-3 樣品量測 45
§4-3-1 樣品觀測 45
§4-3-2 光譜量測 45
第五章 實驗結果與討論 48
§5-1 電控摻雜液晶二聚體之膽固醇液晶 48
§5-1-1 摻雜液晶二聚體對膽固醇液晶穿透頻譜之影響 48
§5-1-2 液晶二聚體濃度對膽固醇液晶的影響 53
§5-1-3 液晶盒厚度對摻雜液晶二聚體之膽固醇液晶的影響 57
§5-1-4 配向膜對摻雜液晶二聚體之膽固醇液晶的影響 59
§5-1-5 手性分子濃度對摻雜液晶二聚體之膽固醇液晶的影響 61
§5-2 以Berreman 4 × 4 matrix分析由Helfrich deformation調制之膽固醇液晶穿透及反射頻譜 63
§5-2-1 量測摻雜液晶二聚體之向列型液晶之尋常光折射率 64
§5-2-2 模擬條件 65
§5-2-3 數據與模擬結果分析 71
第六章 結論與未來展望 76
§6-1 結論 76
§6-1-1 電控摻雜液晶二聚體之膽固醇液晶 76
§6-1-2 以Berreman 4 × 4 matrix分析由Helfrich deformation調制之膽固醇液晶穿透及反射頻譜 78
§6-2 未來展望 79
參考資料 81
參考文獻 [1] K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1, 1033-1041 (2014).
[2] H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photon. 4, 676-685 (2010).
[3] Y. Li, T. Zhan, Z. Yang, C. Xu, P. L. Likamwa, K. Li, and S. T. Wu, “Broadband cholesteric liquid crystal lens for chromatic aberration correction in catadioptric virtual reality optics,” Opt. Express 29, 6011-6019 (2021).
[4] C. S. Lee, T. A. Kumar, J. H. Kim, J. H. Lee, J. S. Gwag, G. D. Leec and S. H. Lee, “An electrically switchable visible to infra-red dual frequency cholesteric liquid crystal light shutter,” J. Mater. Chem. C 6, 4243-4249 (2018).
[5] R. Ozaki, S. Hashimura, S. Yudate, K. Kadowaki, H. Yoshida, and M. Ozaki, “Optical properties of selective diffraction from Bragg-Berry cholesteric liquid crystal deflectors,” OSA Contin. 2, 3554-3563 (2019).
[6] M. Yu, H. Yang, and D.-K. Yang, “Stabilized electrically induced Helfrich deformation and enhanced color tuning in cholesteric liquid crystals,” Soft Matter 13, 8728-8735 (2017).
[7] F. Reinitzer, “Beiträge zur Kenntniss des Cholesterins,” Monatsh. Chem. 9, 421-441 (1888).
[8] O. Lehmann, “Über fliessende Krystalle”. Zeitschrift für Physikalische Chemie. 4, 462–72 (1889).
[9] I. C. Khoo and S. T. Wu, “Optics and nonlinear optics of liquid crystals,” World Scientific (1993).
[10] 松本正一、角田市良(劉瑞祥 譯),“液晶之基礎與應用”,國立編譯館出版 (2003).
[11] R. J. A. Tough and M. J. Bradshaw, “The determination of the order parameters of nematic liquid crystals by mean field extrapolation,” J. Phys. France 44, 447-454 (1983).
[12] L. M. Blinov, “Structure and Properties of Liquid Crystals,” Springer, New York (2011).
[13] H.-S. Kitzerow and C. Bahr, “Chirality in Liquid Crystals,” Springer, New York (2001).
[14] H. Keller, “History of liquid crystals,” Mol. Cryst. Liq. Cryst. 21, 1 (1973).
[15] G. W. Gray, “Thermotropic liquid crystals,” the Society of Chemical Industry (1987).
[16] W. H. de Jeu, “Physical properties of liquid crystalline materials,” Gordon &Breach (1980).
[17] P. Yeh and C. Gu, “Optics of liquid crystal displays,” John Wiley & Sons, Inc. (2006).
[18] P. G. de Gennes, and J. Prost, “The physics of liquid crystals,” Oxford University Press, New York (1993).
[19] G. Vertogen, “Elastic Constants and the Continuum Theory of Liquid Crystals,” Physica 117A, 227-231 (1983).
[20] V. Fréedericksz and A. Repiewa, “Theoretisches und Experimentelles zur Frage nach der Natur der anisotropen Flüssigkeiten,” Z. Phys. 42, 532 (1927).
[21] T. V. Galstyan, V. E. Drnoyan, and S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A 217, 52 (1996).
[22] A. Ryabchun and A. Bobrovsky, “Cholesteric Liquid Crystal Materials for Tunable Diffractive Optics”, Adv. Opt. Mater. 6, 1800335 (2018).
[23] C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99, 041108 (2011).
[24] 李伯逸,“利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究”,國立中央大學光電科學與工程學系 (2016).
[25] S. S. Choi, F. Castles, S. M. Morris, and H. J. Colesd, “High contrast chiral nematic liquid crystal device using negative dielectric material,” Appl. Phys. Lett. 95, 193502 (2009).
[26] R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12, 281-282 (1968).
[27] Y. Inoue and H. Moritake, “Dynamic control of colorful reflection toward practical cholesteric liquid crystal displays,” Opt. Express 24, 23027-23036 (2016).
[28] W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17, 531-532 (1970).
[29] J. P. Hurault, “Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields,” J. Chem. Phys. 59, 2068-2075 (1973).
[30] D.-K. Yang and S.-T. Wu, “Fundamentals of liquid crystal devices,” John Wiley & Sons, Inc. (2015).
[31] G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, “Elastic and viscous properties of the nematic dimer CB7CB,” Phys. Rev. E 96, 062704 (2017).
[32] 楊有承,“雙頻橫向螺旋膽固醇液晶之光電特性及其應用”,國立交通大學光電系統研究所 (2013).
[33] D. A. Paterson, M. Gao, Y.-K. Kim, A. Jamali, K. L. Finley, B. Robles-Hernández, S. Diez-Berart, J. Salud, M. Rosario de la Fuente, B. A. Timimi, H. Zimmermann, C. Greco, A. Ferrarini, J. M. D. Storey, D. O. López, O. D. Lavrentovich, G. R. Luckhurst, and C. T. Imrie, “Understanding the twist-bend nematic phase: the characterisation of 1-(4-cyanobiphenyl-4’-yloxy)-6-(4-cyanobiphenyl-4’-yl)hexane (CB6OCB) and comparison with CB7CB,” Soft Matter 12, 6827-6840 (2016).
[34] Y. Shin, Y. Jiang, Q. Wang, Z. Zhou, G. Qin, and D.-K. Yang, “Flexoelectric-effect-based light waveguide liquid crystal display for transparent display,” Photonics Res. 10, 407-414 (2022).
[35] D. M. Harrington, F. Snik, C. U. Keller, S. R. Sueoka, and G. van Harten, “Polarization modeling and predictions for DKIST part 2: application of the Berreman calculus to spectral polarization fringes of beamsplitters and crystal retarders,” J. Astron. Telesc. Instrum. Syst. 3, 048001 (2017).
[36] V. Belyakov, “Diffraction Optics of Complex-Structured Periodic Media,” Springer (2019).
[37] H. Yoshida, Y. Shiozaki, Y. Inoue, M. Takahashi, Y. Ogawa, A. Fujii, and M. Ozaki, “Threshold improvement in uniformly lying helix cholesteric liquid crystal laser using auxiliary π-conjugated polymer active layer,” J. Appl. Phys. 113, 203105 (2013).
指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2022-9-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明