參考文獻 |
1. Vanier, M.T., Niemann-Pick disease type C. Orphanet J Rare Dis, 2010. 5: p. 16.
2. Vanier, M.T., Complex lipid trafficking in Niemann-Pick disease type C. J Inherit Metab Dis, 2015. 38(1): p. 187-99.
3. Sevin, M., et al., The adult form of Niemann-Pick disease type C. Brain, 2007. 130(Pt 1): p. 120-33.
4. Zervas, M., et al., Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr Biol, 2001. 11(16): p. 1283-7.
5. Patterson, M., Niemann-Pick Disease Type C, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA).
6. Patterson, M.C., et al., Recommendations for the diagnosis and management of Niemann-Pick disease type C: an update. Mol Genet Metab, 2012. 106(3): p. 330-44.
7. Walterfang, M., et al., Dysphagia as a risk factor for mortality in Niemann-Pick disease type C: systematic literature review and evidence from studies with miglustat. Orphanet J Rare Dis, 2012. 7: p. 76.
8. Yanjanin, N.M., et al., Linear clinical progression, independent of age of onset, in Niemann-Pick disease, type C. Am J Med Genet B Neuropsychiatr Genet, 2010. 153B(1): p. 132-40.
9. Mengel, E., et al., Differences in Niemann-Pick disease Type C symptomatology observed in patients of different ages. Mol Genet Metab, 2017. 120(3): p. 180-189.
10. Vanier, M.T. and G. Millat, Niemann-Pick disease type C. Clin Genet, 2003. 64(4): p. 269-81.
11. Camargo, F., et al., Cyclodextrins in the treatment of a mouse model of Niemann-Pick C disease. Life Sci, 2001. 70(2): p. 131-42.
12. Davidson, C.D., et al., Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS One, 2009. 4(9): p. e6951.
13. Peake, K.B. and J.E. Vance, Normalization of cholesterol homeostasis by 2-hydroxypropyl-beta-cyclodextrin in neurons and glia from Niemann-Pick C1 (NPC1)-deficient mice. J Biol Chem, 2012. 287(12): p. 9290-8.
14. Ory, D.S., et al., Intrathecal 2-hydroxypropyl-beta-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label, phase 1-2 trial. Lancet, 2017. 390(10104): p. 1758-1768.
15. Taconet, S., et al., Finding vacuolated lymphocytes in fetal effusions improves the prenatal diagnosis of lysosomal storage diseases. Prenat Diagn, 2020. 40(5): p. 605-611.
16. Parisi, D., et al., Vacuolated PAS-Positive Lymphocytes on Blood Smear: An Easy Screening Tool and a Possible Biomarker for Monitoring Therapeutic Responses in Late Onset Pompe Disease (LOPD). Front Neurol, 2018. 9: p. 880.
17. Vasei, M., M. Abolhasani, and M. Safavi, Vacuolated Lymphocytes as a Clue for Diagnosis of Lysosomal Storage Disease like GM1 Gangliosidosis. Indian J Hematol Blood Transfus, 2018. 34(4): p. 749-750.
18. Anderson, G., et al., Blood film examination for vacuolated lymphocytes in the diagnosis of metabolic disorders; retrospective experience of more than 2,500 cases from a single centre. J Clin Pathol, 2005. 58(12): p. 1305-10.
19. Slatko, B.E., A.F. Gardner, and F.M. Ausubel, Overview of Next-Generation Sequencing Technologies. Curr Protoc Mol Biol, 2018. 122(1): p. e59.
20. Levy, S.E. and R.M. Myers, Advancements in Next-Generation Sequencing. Annu Rev Genomics Hum Genet, 2016. 17: p. 95-115.
21. Burghel, G.J., et al., Towards a Next-Generation Sequencing Diagnostic Service for Tumour Genotyping: A Comparison of Panels and Platforms. Biomed Res Int, 2015. 2015: p. 478017.
22. Behjati, S. and P.S. Tarpey, What is next generation sequencing? Arch Dis Child Educ Pract Ed, 2013. 98(6): p. 236-8.
23. Shen, T., et al., Clinical applications of next generation sequencing in cancer: from panels, to exomes, to genomes. Front Genet, 2015. 6: p. 215.
24. Dawson, S.J., et al., Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med, 2013. 368(13): p. 1199-209.
25. Ley, T.J., et al., A pilot study of high-throughput, sequence-based mutational profiling of primary human acute myeloid leukemia cell genomes. Proc Natl Acad Sci U S A, 2003. 100(24): p. 14275-80.
26. Fremond, M.L., et al., Next-Generation Sequencing for Diagnosis and Tailored Therapy: A Case Report of Astrovirus-Associated Progressive Encephalitis. J Pediatric Infect Dis Soc, 2015. 4(3): p. e53-7.
27. Chiu, R.W., et al., Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci U S A, 2008. 105(51): p. 20458-63.
28. Zhang, X., I. Jonassen, and A. Goksoyr, Machine Learning Approaches for Biomarker Discovery Using Gene Expression Data, in Bioinformatics, I.N. Helder, Editor. 2021: Brisbane (AU).
29. Lovf, M., et al., Multifocal Primary Prostate Cancer Exhibits High Degree of Genomic Heterogeneity. Eur Urol, 2019. 75(3): p. 498-505.
30. Zhang, Y., et al., Differential expression profiles of microRNAs as potential biomarkers for the early diagnosis of lung cancer. Oncol Rep, 2017. 37(6): p. 3543-3553.
31. Yu, G., et al., clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012. 16(5): p. 284-7.
32. Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005. 102(43): p. 15545-50.
33. Chen, C., et al., Ingenuity pathway analysis of human facet joint tissues: Insight into facet joint osteoarthritis. Exp Ther Med, 2020. 19(4): p. 2997-3008.
34. Hwang, J.W., S.K. Jang, and D.J. Lee, Genomic analysis of pancreatic cancer reveals 3 molecular subtypes with different clinical outcomes. Medicine (Baltimore), 2021. 100(14): p. e24969.
35. Kawada, J.I., et al., Immune cell infiltration landscapes in pediatric acute myocarditis analyzed by CIBERSORT. J Cardiol, 2021. 77(2): p. 174-178.
36. Craven, K.E., Y. Gokmen-Polar, and S.S. Badve, CIBERSORT analysis of TCGA and METABRIC identifies subgroups with better outcomes in triple negative breast cancer. Sci Rep, 2021. 11(1): p. 4691.
37. Kanehisa, M. and S. Goto, KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000. 28(1): p. 27-30.
38. Ogata, H., et al., KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res, 1999. 27(1): p. 29-34.
39. Green, R., I. Esparza, and R. Schreiber, Iron inhibits the nonspecific tumoricidal activity of macrophages. A possible contributory mechanism for neoplasia in hemochromatosis. Ann N Y Acad Sci, 1988. 526: p. 301-9.
40. Gene Ontology, C., Gene Ontology Consortium: going forward. Nucleic Acids Res, 2015. 43(Database issue): p. D1049-56.
41. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9.
42. Geberhiwot, T., et al., Consensus clinical management guidelines for Niemann-Pick disease type C. Orphanet J Rare Dis, 2018. 13(1): p. 50.
43. Ediriweera, M.K., K.H. Tennekoon, and S.R. Samarakoon, Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol, 2019. 59: p. 147-160.
44. Davis, O.B., et al., NPC1-mTORC1 Signaling Couples Cholesterol Sensing to Organelle Homeostasis and Is a Targetable Pathway in Niemann-Pick Type C. Dev Cell, 2021. 56(3): p. 260-276 e7.
45. Johnston, P.A. and J.R. Grandis, STAT3 signaling: anticancer strategies and challenges. Mol Interv, 2011. 11(1): p. 18-26.
46. Chen, F., et al., Case Report: Be Aware of "New" Features of Niemann-Pick Disease: Insights From Two Pediatric Cases. Front Genet, 2022. 13: p. 845246. |