博碩士論文 109222034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.17.175.191
姓名 林顯州(Hsien-Chou Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Diffusion in Realistic-Like Double-Layered Ices)
相關論文
★ A Complete Quantification of Photon-induced Desorption Processes of CO2 Ice★ X射線與電子能量作用下星際冰晶的化學衍化
★ VUV and EUV irradiation of CH4+NH3 ice mixtures★ Wavelength-dependent photodesorption of VUV-inactive molecular ices (N2 Ar, Kr) induced by VUV-excited CO ice
★ Temperature dependent photodesorption of CO ices★ Force between Contacting PDMS Surfaces upon Steady Sliding: Speed Dependence and Fluctuations
★ 能量源照射星際冰晶之光脫附作用與光化學反應★ Chemical evolution of CO:H2S ice mixture under 1 keV electron irradiation
★ 不同電子能量作用下對N2O冰晶的衍化影響★ 月球碰撞閃焰觀察系統之設立及資料處理分析
★ Temperature Dependence of Effective Sites in Water Ice and Carbonaceous Dust Interactions★ Electron-induced diffusion within astrophysical layered ices
★ 利用光譜分析在層冰中由真空紫外光所誘發的能量傳遞★ 一氧化二氮冰晶在真空紫外光照射下其生成溫度對耗散截面的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於冷星雲的內部溫度僅有10 K,經過了上百萬年的吸積,幾乎所有的分子(除了氫氣以外)都會冷凝成冰晶並附著在宇宙塵埃的表面上。根據現有的宇宙觀測,這些宇宙冰晶會形成一個雙層的結構[1]。在先前的研究中,我們在實驗室模擬了宇宙冰晶,長出了下層為水(H2O):甲烷(13CH4):氨氣(15NH3)=2:1:1,上層為一氧化碳(CO):甲醇(CH3OH)=3:1 的冰晶。透過同位素的標定,發現了X射線的照射可以引發分子在冰晶內的擴散現象。來自下層的產物(如:13CO、13CO2 和15N2等)穿過上層,並從冰晶的表面脫附。因為X射線會生成大量的二次電子,同時宇宙射線也會生成真空紫外光,在本次研究中我們分別使用了電子及真空紫外光進行照射,同樣發現了來自下層的產物從冰晶的表面脫附。這個結果證明了電子及真空紫外光也能引發擴散現象。透過建立模型,將能夠計算出CO 在冰晶中的擴散係數,並將與X射線的結果進行比較。
摘要(英) In the interior of a cold dense cloud, since the temperature is as low as 10 K, the molecules condense to dust grains. According to the observational data, these ices are expected to form a double-layered structure.
In previous studies, we found that X-ray can induce the bulk diffusion in the realistic-like double-layered ices which include H2O + 13CH4 + 15NH3 (2:1:1) in the bottom layer and CO + CH3OH (3:1) in the top layer. The species produced in bottom layer, such as 13CO, 13CO2 and 15N2, desorbed from the ices. Since X-ray generate secondary electrons and cosmic ray can induced vacuum ultraviolet (VUV) field, we studied the realistic-like double-layered ice under electron and VUV irradiation and found the desorption of species from the bottom layer. These results proved that the species produced in bottom layer can diffuse through the top layer. Then we developed some models to calculate the diffusion coefficient of CO in the realistic double-layered ices and compared with the diffusion coefficient under X-ray irradiation.
關鍵字(中) ★ 星際冰晶
★ 擴散
關鍵字(英) ★ Interstellar ice
★ Diffusion
論文目次 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 2 Experimental methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 IPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 IEPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Laboratory energetic source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.1 Microwave-Discharged Hydrogen Lamp (MDHL). . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 Electron gun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.1 Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.3 Irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.4 Warm up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Length conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 3 Model for diffusion coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Plane source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Exponential source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Square source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Einstein–Smoluchowski equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Chapter 4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Diffusion coefficient derivation – VUV irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.1 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 E–S equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Diffusion coefficient derivation – Electron irradiation . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 E–S equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Chapter 5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Appendix A Model derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Appendix B Factor derivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
參考文獻 [1] A. Boogert et al. “Observations of the icy universe.” Annual Review of Astronomy and Astrophysics, 53:541 (2015).
[2] R. Gredel et al. “Cosmic-ray-induced photodissociation and photoionization rates of interstellar molecules.” The Astrophysical Journal, 347:289 (1989).
[3] F. Mispelaer et al. “Diffusion measurements of CO HNCO, H2CO, and NH3 in amorphous water ice.” Astronomy & Astrophysics, 555:A13 (2013).
[4] I. R. Cooke et al. “CO diffusion and desorption kinetics in CO2 ices.” The Astrophysical Journal, 852:75 (2018).
[5] A. Ciaravella et al. “X-ray processing of a realistic ice mantle can explain the gas abundances in protoplanetary disks.” Proceedings of the National Academy of Sciences, 117:16149 (2020).
[6] A. Jiménez-Escobar et al. “X-Ray-induced Diffusion and Mixing in Layered Astrophysical Ices.” The Astrophysical Journal, 926:176 (2022).
[7] G. A. Cruz-Diaz et al. “Vacuum-UV spectroscopy of interstellar ice analogs-I. Absorption cross-sections of polar-ice molecules.” Astronomy & Astrophysics, 562:A119 (2014).
[8] Y.-J. Chen et al. “Vacuum ultraviolet emission spectrum measurement of a microwavedischarge hydrogen-flow lamp in several configurations: application to photodesorption of CO ice.” The Astrophysical Journal, 781:15 (2014).
[9] C.-H. Huang et al. “Effects of 150–1000 eV electron impacts on pure carbon monoxide ices using the interstellar energetic-process system (IEPS).” The Astrophysical Journal, 889:57 (2020).
[10] EFG-7 ELECTRON GUN AND EGPS-1017 POWER SUPPLY SYSTEM. Kimball Physics. Kimball Hill Road Wilton, NH, USA, 2016.
[11] M. Bouilloud et al. “Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO.” Monthly Notices of the Royal Astronomical Society, 51:2145 (2015).
[12] M. Á. Satorre et al. “Refractive index and density of ammonia ice at different temperatures of deposition.” Icarus, 225:703 (2013).
[13] A. H. Narten et al. “Diffraction pattern and structure of amorphous solid water at 10 and 77 K.” The Journal of Chemical Physics, 64:1106 (1976).
[14] A. Fick. “Ueber diffusion.” Annalen der Physik, 170:59 (1855).
[15] J. Crank. The mathematics of diffusion. Oxford university press, 1979.
[16] M. A. Islam. “Einstein–Smoluchowski diffusion equation: a discussion.” Physica Scripta, 70:120 (2004).
[17] S. A. Sandford and L. J. Allamandola. “Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry.” The Astrophysical Journal, 417:815 (1993).
[18] W. Hagen et al. “The infrared spectra of amorphous solid water and ice Ic between 10 and 140 K.” Chemical Physics, 56:367 (1981).
[19] L. B. d’Hendecourt and L. J. Allamandola. “Time dependent chemistry in dense molecular clouds. III. Infrared band cross sections of molecules in the solid state at 10 K.” Astronomy and Astrophysics Supplement Series, 64:453 (1986).
[20] P. A. Gerakines et al. “The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures.” Astronomy and Astrophysics, 296:810 (1995).
[21] D. M. Hudgins et al. “Mid-and far-infrared spectroscopy of ices-Optical constants and integrated absorbances.” The Astrophysical Journal Supplement Series, 86:713 (1993).
[22] G. J. Jiang et al. “Absolute infrared intensities and band shapes in pure solid CO and CO in some solid matrices.” The Journal of Chemical Physics, 62:1201 (1975).
[23] S. E. Bisschop et al. “H-atom bombardment of CO2, HCOOH, and CH3CHO containing ices.” Astronomy & Astrophysics, 474:1061 (2007).
[24] F. A. Van Broekhuizen et al. “A quantitative analysis of OCN-formation in interstellar ice analogs.” Astronomy & Astrophysics, 415:425 (2004).
[25] E. L. Varetti and George C Pimentel. “Isomeric forms of dinitrogen trioxide in a nitrogen matrix.” The Journal of Chemical Physics, 55:3813 (1971).
[26] Stephen Wolfram. The mathematica book. Vol. 1. Wolfram Research, Inc., 2003.
[27] D. Drouin et al. “CASINO V2. 42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users.” Scanning: The Journal of Scanning Microscopies, 29:92 (2007).
[28] F. Buss et al. “From micro to nano thin polymer layers: thickness and concentration dependence of sorption and the solvent diffusion coefficient.” Macromolecules, 48:8285 (2015).
[29] T. Lauck et al. “CO diffusion into amorphous H2O ices.” The Astrophysical Journal, 801:118 (2015).
指導教授 陳俞融(Yu-Jung Chen) 審核日期 2022-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明