博碩士論文 107388601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.142.199.70
姓名 童哈汀(Thoharudin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 綜合多元改進之多步驟動力生質物快速熱解方法的數值模擬
(Numerical Simulation of Biomass Fast Pyrolysis under Modified Comprehensive Multistep Kinetic Scheme)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-18以後開放)
摘要(中) 生質物是可大規模使用的可再生能源之一。然而,直接使用生質物作為燃料會產生不利影響,包括燃燒效率低,以及煙氣路徑管線的腐蝕和結垢。在生質物熱轉化技術中,快速熱解技術因其加工速度快、轉化效率高、生物油產量大等優點,而成為一種很有前景的技術。計算流體動力學 (CFD) 已被證明是用於對複雜現象進行數值模擬的強大工具,包括涉及多相相互作用和化學反應的快速熱解。雙流體模型 (TFM) 框架在 Ansys Fluent 中提供低成本和有效的計算,它具有用戶友好的界面和嵌入式方程,具有用戶定義的函數 (UDF) 工具來修改或整合方程。熱解的綜合多步動力學方法是最有吸引力的熱解動力學機制,因為它能夠描述產物的產率和組成。
本研究分為三個步驟: (i) 根據文獻中的實驗和動力方法中,目前使用的組份,通過改變有機組份來修改熱解的綜合多步動力方法。實施適應的動力方法以研究管式反應器中快速熱解的能量動力學。 (ii) 通過合併反應步驟和去除無關緊要的反應步驟來簡化適應綜合動力方法。這種簡化將反應步驟從 25 個步驟減少到 16 個步驟,包括水分蒸發。實施該簡化方法以評估流化床熱解中生物顆粒尺寸和流化速度的影響。 (iii) 將簡化的動力方法與先進的次級和均相反應相結合,因為傳統次級反應的有機/焦油轉化速度比預期的要快。然後將該綜合動力方法用於流化床熱解的能量和可用能分析。所有提出的動力改進方法都經過實驗的驗證
摘要(英) Biomass is one of the renewable energy sources available on a large scale. However, the direct use of biomass as fuel promotes adversary effects, including low combustion efficiency, and corrosion and fouling along the flue gas path. Among the biomass thermal conversion technologies, fast pyrolysis is a promising technology due to its rapid process and high conversion efficiency with the maximum bio-oil product. Computational fluid dynamics (CFD) has proven to be a powerful tool for numerical simulations in complex phenomena, including fast pyrolysis, which involves multiphase interactions and chemical reactions. The two-fluid model (TFM) framework offers low-cost and effective computation in Ansys Fluent, which has a user-friendly interface and embedded equations with a user-defined function (UDF) facility to modify or integrate the equations. The comprehensive multistep kinetic scheme of pyrolysis is the most attractive pyrolysis kinetic mechanism due to the capability to describe both product yields and compositions.
This study is divided into three steps: (i) Modify the comprehensive multistep kinetic scheme of pyrolysis by changing the organic species based on the experiment in literature and currently used species in the kinetic scheme. The adapted kinetic scheme was implemented for investigating the energy dynamics of fast pyrolysis in a tubular reactor. (ii) Simplify the adapted comprehensive kinetic scheme by combining the reaction steps and removing the insignificant reaction steps. This simplification reduced the reaction steps from 25 to 16 steps, including moisture evaporation. This simplified scheme was implemented to evaluate the effect of bioparticle size and fluidizing velocity in fluidized bed pyrolysis. (iii) Integrate the simplified kinetic scheme with the advanced secondary and homogeneous reactions since the conventional secondary reaction had a faster organic/tar conversion than expected. This integrated kinetic scheme was then employed for energy and exergy analyses of fluidized bed pyrolysis. All of the proposed kinetic modifications were validated with the experimental counterparts.
關鍵字(中) ★ 生質物
★ 快速熱解
★ 計算流體動力學
★ 綜合機制
★ 能量/可用能分析
關鍵字(英) ★ biomass
★ fast pyrolysis
★ CFD
★ comprehensive mechanism
★ energy-exergy dynamics
論文目次 Abstract ii
Acknowledgements iii
List of Papers in the Thesis iv
Table of Contents v
List of Figures viii
List of Tables xii
Nomenclature xiii
Chapter 1 Introduction 1
1.1. Background 1
1.2. Motivation 4
1.3. Research objectives 5
1.4. Structure of the thesis 6

Chapter 2 Literature Review 8
2.1. Pyrolysis of lignocellulosic biomass 8
2.2. Computational fluid dynamics 15
2.2.1 Drag models 16
2.2.2 Heat transfer models 17
2.2.3 Pyrolysis kinetic reaction models 17
2.3. Energy and exergy analyses 24

Chapter 3 Methodology 28
3.1. Pyrolysis in a tubular reactor 28
3.1.1. Experiment procedures 28
3.1.2. Simulation model 28
3.1.3. Modification of comprehensive multistep kinetic reaction 30
3.2. Pyrolysis in a fluidized bed reactor 34
3.2.1. Simulation model 34
3.2.2. Simplification of the comprehensive multistep kinetic reaction 36
3.2.3. Implementation of the advanced secondary reaction and homogeneous reaction 40
3.3 Computational approaches 42
3.4. Energy calculation 47
3.5. Exergy calculation 49
3.6. Fluidization performance 52
3.7. Model assumptions 54

Chapter 4 Pyrolysis in a tubular reactor under improved comprehensive multistep scheme 56
4.1. Characteristics of thermal decomposition 56
4.2. Non-condensable gas 60
4.3. Bio-oil 63
4.4. Solid residue 67
4.5. Energy distribution 68

Chapter 5 Effect of bioparticle size and fluidizing velocity in fluidized bed pyrolysis under simplified comprehensive multistep scheme 70
5.1. Validation data 70
5.2. Hydrodynamics 75
5.3. Reaction characteristics 80
5.4. Pyrolysis product yields 84
5.5. Product compositions 85
5.6. Energy dynamics 88

Chapter 6 Energy and exergy analyses of fluidized bed pyrolysis 92
6.1. Validation data 92
6.2. Effect of temperature 96
6.3. Effect of lignocellulosic constituent 104
6.4. Effect of feeding rate‒fluidizing velocity 108

Chapter 7 Conclusion and Future Work 115
7.1. Conclusion 115
7.2. Future work 117

References 118


Appendix 125
Appendix A: Physical and chemical properties of simulated species 125
Appendix B: User-defined functions (UDFs) 127
參考文獻 [1] Cardoso J, Silva V, Eusébio D, Brito P, Tarelho L. Improved Numerical Approaches to Predict Hydrodynamics in a Pilot-Scale Bubbling Fluidized Bed Biomass Reactor: A Numerical Study with Experimental Validation. Energy Convers Manag 2018;156:53–67.
[2] Huang Y, Liu H, Yuan H, Zhan H, Zhuang X, Yuan S, et al. Relevance between Chemical Structure and Pyrolysis Behavior of Palm Kernel Shell Lignin. Sci Total Environ 2018;633:785–95.
[3] Chapela S, Porteiro J, Míguez JL, Behrendt F. Eulerian CFD Fouling Model for Fixed Bed Biomass Combustion Systems. Fuel 2020;278:118251.
[4] Dhyani V, Bhaskar T. A Comprehensive Review on The Pyrolysis of Lignocellulosic Biomass. Renew Energy 2018;129:695–716.
[5] Bridgwater AV. Review of Fast Pyrolysis of Biomass and Product Upgrading. Biomass and Bioenergy 2012;30:68–94.
[6] Yang S, Wang S, Wang H. Numerical Study of Biomass Gasification in a 0.3 MWth Full-Loop Circulating Fluidized Bed Gasifier. Energy Convers Manag 2020;223:113439.
[7] Zhou T, Yang S, Wei Y, Hu J, Wang H. Impact of Wide Particle Size Distribution on the Gasification Performance of Biomass in a Bubbling Fluidized Bed Gasifier. Renew Energy 2020;148:534–47.
[8] Tran QK, Le ML, Ly HV, Woo HC, Kim J, Kim S-S. Fast Pyrolysis of Pitch Pine Biomass in a Bubbling Fluidized-Bed Reactor for Bio-Oil Production. J Ind Eng Chem 2021;98:168–79.
[9] Wang J, Zhong Z, Ding K, Li M, Hao N, Meng X, et al. Catalytic Fast Co-Pyrolysis of Bamboo Sawdust and Waste Tire using a Tandem Reactor with Cascade Bubbling Fluidized Bed and Fixed Bed System. Energy Convers Manag 2019;180:60–71.
[10] Santamaria L, Beirow M, Mangold F, Lopez G, Olazar M, Schmid M, et al. Influence of Temperature on Products from Fluidized Bed Pyrolysis of Wood and Solid Recovered Fuel. Fuel 2021;283:118922.
[11] Chen B, Han X, Tong J, Mu M, Jiang X, Wang S, et al. Studies of Fast Co-Pyrolysis of Oil Shale and Wood in a Bubbling Fluidized Bed. Energy Convers Manag 2020;205:112356.
[12] Reyes L, Abdelouahed L, Mohabeer C, Buvat J-C, Taouk B. Energetic and Exergetic Study of the Pyrolysis of Lignocellulosic Biomasses, Cellulose, Hemicellulose and Lignin. Energy Convers Manag 2021;244:114459.
[13] Yang S, Liu X, Wang S. CFD Simulation of Air-Blown Coal Gasification in a Fluidized Bed Reactor with Continuous Feedstock. Energy Convers Manag 2020;213:112774.
[14] Luo H, Wang X, Liu X, Wu X, Shi X, Xiong Q. A Review on CFD Simulation of Biomass Pyrolysis in Fluidized Bed Reactors with Emphasis on Particle-Scale Models. J Anal Appl Pyrolysis 2022;162:105433.
[15] Vikram S, Rosha P, Kumar S. Recent Modeling Approaches to Biomass Pyrolysis: A Review. Energy & Fuels 2021;35:7406–33.
[16] Shafizadeh F, Chin PPS. Thermal Deterioration of Wood. ACS Symp Ser 1977;43:57–81.
[17] Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, et al. Chemical Kinetics of Biomass Pyrolysis. Energy & Fuels 2008;22:4292–300.
[18] Blondeau J, Jeanmart H. Biomass Pyrolysis at High Temperatures: Prediction of Gaseous Species Yields from An Anisotropic Particle. Biomass and Bioenergy 2012;41:107–21.
[19] Anca-Couce A, Sommersacher P, Scharler R. Online Experiments and Modelling with a Detailed Reaction Scheme of Single Particle Biomass Pyrolysis. J Anal Appl Pyrolysis 2017;127:411–25.
[20] Gentile G, Debiagi PEA, Cuoci A, Frassoldati A, Ranzi E, Faravelli T. A Computational Framework for the Pyrolysis of Anisotropic Biomass Particles. Chem Eng J 2017;321:458–73.
[21] Ranzi E, Debiagi PEA, Frassoldati A. Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note I: Kinetic Mechanism of Biomass Pyrolysis. ACS Sustain Chem Eng 2017;5:2867–81.
[22] Mellin P, Zhang Q, Kantarelis E, Yang W. An Euler–Euler Approach to Modeling Biomass Fast Pyrolysis in Fluidized-Bed Reactors – Focusing on the Gas Phase. Appl Therm Eng 2013;58:344–53.
[23] Debiagi P, Gentile G, Cuoci A, Frassoldati A, Ranzi E, Faravelli T. A Predictive Model of Biochar Formation and Characterization. J Anal Appl Pyrolysis 2018;134:326–35.
[24] Channiwala SA, Parikh PP. A Unified Correlation for estimating HHV of Solid, Liquid and Gaseous Fuels. Fuel 2002;81:1051–63.
[25] Choi MK, Park HC, Choi HS. Comprehensive Evaluation of Various Pyrolysis Reaction Mechanisms for Pyrolysis Process Simulation. Chem Eng Process - Process Intensif 2018;130:19–35.
[26] Mellin P, Kantarelis E, Yang W. Computational Fluid Dynamics Modeling of Biomass Fast Pyrolysis in a Fluidized Bed Reactor, Using a Comprehensive Chemistry Scheme. Fuel 2014;117:704–15.
[27] Lu L, Gao X, Gel A, Wiggins GM, Crowley M, Pecha B, et al. Investigating Biomass Composition and Size Effects on Fast Pyrolysis using Global Sensitivity Analysis and CFD Simulations. Chem Eng J 2020;421:127789.
[28] Chen T, Ku X, Lin J, Ström H. Pyrolysis Simulation of Thermally Thick Biomass Particles Based on a Multistep Kinetic Scheme. Energy Fuels 2020;34:1940–57.
[29] Wang S, Luo Z. Pyrolysis of Biomass. Berlin/Boston: Walter de Gruyter GmbH; 2017.
[30] Anca-Couce A. Reaction Mechanisms and Multi-Scale Modelling of Lignocellulosic Biomass Pyrolysis. Prog Energy Combust Sci 2016;53:41–79.
[31] Zhao S, Liu M, Zhao L, Zhu L. Influence of Interactions among Three Biomass Components on the Pyrolysis Behavior. Ind Eng Chem Res 2018;57:5241–9.
[32] Ansari KB, Arora JS, Chew JW, Dauenhauer PJ, Mushrif SH. Fast Pyrolysis of Cellulose, Hemicellulose, and Lignin: Effect of Operating Temperature on Bio-oil Yield and Composition and Insights into the Intrinsic Pyrolysis Chemistry. Ind Eng Chem Res 2019;58:15838–52.
[33] Zhao C, Jiang E, Chen A. Volatile Production from Pyrolysis of Cellulose, Hemicellulose and Lignin. J Energy Inst 2017;90:902–13.
[34] Qu T, Guo W, Shen L, Xiao J, Zhao K. Experimental Study of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose, and Lignin. Ind Eng Chem Res 2011;50:10424–33.
[35] K. N. Y, T. PD, P. S, S. K, R. YK, Varjani S, et al. Lignocellulosic Biomass-Based Pyrolysis: A Comprehensive Review. Chemosphere 2022;286:131824.
[36] Carrier M, Windt M, Ziegler B, Appelt J, Saake B, Meier D, et al. Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin. ChemSusChem 2017;10:3212–24.
[37] Kawamoto H. Lignin Pyrolysis Reactions. J Wood Sci 2017;63:117–132.
[38] Yerrayya A, Natarajan U, Vinu R. Fast Pyrolysis of Guaiacol to Simple Phenols: Experiments, Theory and Kinetic Model. Chem Eng Sci 2019;2017:619–30.
[39] Mullen CA, Boateng AA, Goldberg NM, Lima IM, Laird DA, Hicks KB. Bio-oil and Bio-char Production from Corn Cobs and Stover by Fast Pyrolysis. Biomass and Bioenergy 2010;34:67–74.
[40] Greenhalf CE, Nowakowski DJ, Harms AB, Titiloye JO, Bridgwater AV. A Comparative Study of Straw, Perennial Grasses and Hardwoods in Terms of Fast Pyrolysis Products. Fuel 2013;108:216–30.
[41] Mollinedo J, Schumacher TE, Chintala R. Influence of Feedstocks and Pyrolysis on Biochar’s Capacity to Modify Soil Water Retention Characteristics. J Anal Appl Pyrolysis 2015;114:100–8.
[42] Yu D, Jin G, Pang Y, Chen Y, Guo S, Shen S. Gas Characteristics of Pine Sawdust Catalyzed Pyrolysis by Additives. J Therm Sci 2021;30:333–342.
[43] Hanif MU, Zwawi M, Capareda SC, Iqbal H, Algarni M, Felemban BF, et al. Influence of Pyrolysis Temperature on Product Distribution and Characteristics of Anaerobic Sludge. Energies 2020;13:79.
[44] Mante OD, Agblevor FA, Oyama ST, Clung RM. The Influence of Recycling Non-Condensable Gases in the Fractional Catalytic Pyrolysis of Biomass. Bioresour Technol 2012;111:482–90.
[45] Sahu AK, Raghavan V, Prasad BVSSS. Numerical Simulation of Gas-Solid Flows in Fluidized Bed Gasification Reactor. Adv Powder Technol 2019;30:3050–66.
[46] Muhammad A, Zhang N, Wang W. CFD Simulations of a Full-Loop CFB Reactor Using Coarse-Grained Eulerian–Lagrangian Dense Discrete Phase Model: Effects of Modeling Parameters. Powder Technol 2019;354:615–29.
[47] Yang S, Wan Z, Wang S, Wang H. Reactive MP-PIC Investigation of Heat and Mass Transfer Behaviors during the Biomass Pyrolysis in a Fluidized Bed Reactor. J Environ Chem Eng 2021;9:105047.
[48] Wan Z, Yang S, Hu J, Bao G, Wang H. Numerical Analysis of Wood Air Gasification in a Bubbling Fluidized Gasifier with Reactive Charcoal as Bed Material. Renew Energy 2022;188:282–98.
[49] Jalalifar S, Abbassi R, Garaniya V, Hawboldt K, Ghiji M. Parametric Analysis of Pyrolysis Process on The Product Yields in a Bubbling Fluidized Bed Reactor. Fuel 2018;234:616–25.
[50] Igci Y, Andrews AT, Sundaresan S, Pannala S, O’Brien T. Filtered Two-Fluid Models for Fluidized Gas-Particle Suspensions. Part Technol Fluid 2008;54:1431–48.
[51] Wang W, Li J. Simulation of Gas–Solid Two-Phase Flow by a Multi-Scale CFD Approach—of the EMMS Model to the Sub-Grid Level. Chem Eng Sci 2007;62.
[52] Upadhyay M, Kim A, Kim H, Lim D, Lim H. An Assessment of Drag Models in Eulerian–Eulerian CFD Simulation of Gas–Solid Flow Hydrodynamics in Circulating Fluidized Bed Riser. ChemEngineering 2020;4.
[53] Ranz WE, Marshall WR. Evaporation from Drops - Part 1. Chem Eng Prog 1952;48:141–8.
[54] Tomiyama A. Struggle with Computational Bubble Dynamics. Multiph Sci Technol 1998;10:369–405.
[55] Eri Q, Peng J, Zhao X. CFD Simulation of Biomass Steam Gasification in a Fluidized Bed Based on a Multi-Composition Multi-Step Kinetic Model. Appl Therm Eng 2018;129:1358–68.
[56] Gunn DJ. Transfer of Heat or Mass to Particles in Fixed and Fluidized Beds. Int J Heat Mass Transf 1978;21:467–76.
[57] Zeng X, Liang C, Duan L, Chen X, Liu D, Ma J. Thermal Radiation Characteristics in Dilute Phase Region of the Oxy-Fuel Combustion Pressurized Fluidized Bed. Appl Therm Eng 2020;179:115659.
[58] Qian Y, Yu Y, Xu G, Liu X. CFD Modeling of Coal Pyrolysis in Externally Heated Fixed-Bed Reactor. Fuel 2018;233:685–94.
[59] Di Blasi C. Kinetic and Heat Transfer Control in the Slow and Flash Pyrolysis of Solids. Ind Eng Chem Res 1996;33:37–46.
[60] Thoharudin, Chen Y-S, Hsiau S-S. Numerical Studies on Fast Pyrolysis of Palm Kernel Shell in a Fluidized Bed Reactor. IOP Conf. Ser. Mater. Sci. Eng., 2020.
[61] Calonaci M, Grana R, Hemings EB, Bozzano G, Dente M, Ranzi E. Comprehensive Kinetic Modeling Study of Bio-oil Formation from Fast Pyrolysis of Biomass. Energy & Fuels 2010;24:5727–34.
[62] Corbetta M, Frassoldati A, Bennadji H, Smith K, Serapiglia MJ, Gauthier G, et al. Pyrolysis of Centimeter-Scale Woody Biomass Particles: Kinetic Modeling and Experimental Validation. Energy Fuels 2014;28:3884–98.
[63] Anca-Couce A, Scharler R. Modelling Heat of Reaction in Biomass Pyrolysis with Detailed Reaction Schemes. Fuel 2017;206:572–9.
[64] Ptasinski KJ. Efficiency of Biomass Energy. New Jersey: John Wiley & Sons, Inc.; 2016.
[65] Szargut J, Morris DR, Steward FR. Exergy analysis of Thermal, Chemical and Metallurgical Processes. New York: Hemisphere Publishing Corporation; 1988.
[66] Szargut J. Exergy Method. Southampton: WIT Press; 2005.
[67] Rupesh S, Muraleedharan C, Arun P. Energy and Exergy Analysis of Syngas Production from Different Biomasses Through Air-Steam Gasification. Front Energy 2020;14:607–19.
[68] Dhahak A, Bounaceur R, Dreff-Lorimier C Le, Schmidt G. Development of a Detailed Kinetic Model for the Combustion of Biomass. Fuel 2019;242:756–74.
[69] Chen W-H, Wang C-W, Ong HC, Show PL, Hsieh T-H. Torrefaction, Pyrolysis and Two-Stage Thermodegradation of Hemicellulose, Cellulose and Lignin. Fuel 2019;258:116168.
[70] Gao Z, Li N, Wang Y, Niu W, Yi W. Pyrolysis Behavior of Xylan-Based Hemicellulose in a Fixed Bed Reactor. J Anal Appl Pyrolysis 2020;146:104772.
[71] Yang X, Fu Z, Han D, Zhao Y, Li R, Wu Y. Unveiling the Pyrolysis Mechanisms of Cellulose: Experimental and Theoretical Studies. Renew Energy 2020;147:1120–30.
[72] Patwardhan PR, Satrio JA, Brown RC, Shanks BH. Influence of Inorganic Salts on the Primary Pyrolysis Products of Cellulose. Bioresour Technol 2010;101:4646–55.
[73] Horne PA, Williams PT. Influence of Temperature on the Products from the Flash Pyrolysis of Biomass. Fuel 1996;75:1051–9.
[74] Thoharudin, Hsiau S-S, Chen Y-S, Yang S. Numerical Simulation of Fluidized Bed Pyrolysis under a Simplified Comprehensive Multistep Kinetic Mechanism: Effects of Particle Size and Fluidization Velocity. Energy Convers Manag 2022;254:115259.
[75] Miller RS, Bellan J. A Generalized Biomass Pyrolysis Model Based on Superimposed Cellulose, Hemicelluloseand Liqnin Kinetics. Combust Sci Technol 1997;126:97–137.
[76] Thoharudin, Hsiau S-S, Chen Y-S, Yang S. Numerical Modeling of Biomass Fast Pyrolysis by using an Improved Comprehensive Reaction Scheme for Energy Analysis. Renew Energy 2022;181:355–64.
[77] Chen T, Ku X, Lin J, Ström H. CFD-DEM Simulation of Biomass Pyrolysis in Fluidized-Bed Reactor with a Multistep Kinetic Scheme. Energies 2020;13:5358.
[78] Chen T, Ku X, Li T, Karlsson BSA, Sjöblom J, Ström H. High-Temperature Pyrolysis Modeling of a Thermally Thick Biomass Particle Based on an MD-Derived Tar Cracking Model. Chem Eng J 2021;417:127923.
[79] Peters JF, Banks SW, Bridgwater A V., Dufour J. A Kinetic Reaction Model for Biomass Pyrolysis Processes in Aspen Plus. Appl Energy 2017;188:595–603.
[80] Pelucchi M, Cavallotti C, Cuoci A, Faravelli T, Frassoldati A, Ranzi E. Detailed Kinetics of Substituted Phenolic Species in Pyrolysis Bio-Oils. React Chem Eng 2019;4:490–506.
[81] Yang M, Zhang J, Zhong S, Li T, Løvås T, Fatehi H, et al. CFD Modeling of Biomass Combustion and Gasification in Fluidized Bed Reactors using a Distribution Kernel Method. Combust Flame 2022;236:111744.
[82] Ansys Fuent. Theory Guide. Canonsburg: Ansys Inc.; 2020.
[83] Gidaspow D, Bezburuah R, Ding J. Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach. Fluid. VII, Proc. 7th Eng. Found. Conf. Fluid., 1992, p. 75–82.
[84] Schaeffer DG. Instability in the Evolution Equations Describing Incompressible Granular Flow. J Differ Equ 1987;66:19–50.
[85] Lun CKK, Savage SB, Jeffrey DJ, Chepurniy N. Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flowfield. J Fluid Mech 1984;140:223–56.
[86] Gidaspow D. Multiphase Flow and Fluidization. London: Academic Press; 1994.
[87] Couto N, Silva V, Monteiro E, Rouboa A. Exergy Analysis of Portuguese Municipal Solid Waste Treatment via Steam Gasification. Energy Convers Manag 2017;134:235–46.
[88] Zhang Y, Ji G, Ma D, Chen C, Wang Y, Wang W, et al. Exergy and Energy Analysis of Pyrolysis of Plastic Wastes in Rotary Kiln with Heat Carrier. Process Saf Environ Prot 2020;142:203–11.
[89] Zhang Y, Zhao Y, Gao X, Li B, Huang J. Energy and Exergy Analyses of Syngas Produced from Rice Husk Gasification in an Entrained Flow Reactor. J Clean Prod 2015;95:273–80.
[90] Singh RK, Jena K, Chakraborty JP, Sarkar A. Energy and Exergy Analysis for Torrefaction of Pigeon Pea Stalk (Cajanus Cajan) and Eucalyptus (Eucalyptus Tereticornis). Int J Hydrogen Energy 2020;45:18922–36.
[91] Samimi F, Marzoughi T, Rahimpour MR. Energy and Exergy Analysis and Optimization of Biomass Gasification Process for Hydrogen Production (Based on Air, Steam and Air/Steam Gasifying Agents). Int J Hydrogen Energy 2020;45:33185–97.
[92] Atienza-Martínez M, Ábrego J, FranciscoMastral J, Ceamanos J, Gea G. Energy and Exergy Analyses of Sewage Sludge Thermochemical Treatment. Energy 2018;144:723–35.
[93] Wen CY, Yu YH. A Generalized Method for Predicting the Minimum Fluidization Velocity. AICHE J 1966;12.
[94] Yang W-C. Particle characterization and dynamics. Handb. Fluid. Fluid-Particle Syst., Boca Raton: CRC Press; 2003, p. 1–29.
[95] Rößger P, Richter A. Numerical Modeling of a Batch Fluidized-Bed Gasifier: Interaction of Chemical Reaction, Particle Morphology Development and Hydrodynamics. Powder Technol 2021;384:148–59.
[96] Chiodo V, Zafarana G, Maisano S, Freni S, Urbani F. Pyrolysis of Different Biomass: Direct Comparison among Posidonia Oceanica, Lacustrine Alga and White-Pine. Fuel 2016;164:220–7.
[97] Xu B, Argyle MD, Shi X, Goroncy AK, Rony AH, Tan G, et al. Effects of Mixture of CO2 /CH4 as Pyrolysis Atmosphere on Pine Wood Pyrolysis Products. Renew Energy 2020;162:1243–54.
[98] Guedes RE, Luna AS, Torres AR. Operating Parameters for Bio-oil Production in Biomass Pyrolysis: A Review. J Anal Appl Pyrolysis 2018;129:134–49.
[99] Muley PD, Henkel C, Abdollahi KK, Marculescu C, Boldor D. A Critical Comparison of Pyrolysis of Cellulose, Lignin, and Pine Sawdust Using an Induction Heating Reactor. Energy Convers Manag 2016;117:273–80.
[100] Worasuwannarak N, Sonobe T, Tanthapanichakoon W. Pyrolysis Behaviors of Rice Straw, Rice Husk, and Corncob by TG-MS Technique. J Anal Appl Pyrolysis 2007;78:265–71.
[101] Park Y-K, Yoo ML, Heo HS, Lee HW, Park SH, Jung S-C, et al. Wild Reed of Suncheon Bay: Potential Bio-Energy Source. Renew Energy 2012;42:168–72.
[102] Hu X, Guo H, Gholizadeh M, Sattari B, Liu Q. Pyrolysis of Different Wood Species: Impacts of C/H Ratio in Feedstock on Distribution of Pyrolysis Products. Biomass and Bioenergy 2019;120:28–39.
[103] Ren X, Meng J, Chang J, Kelley SS, Jameel H, Park S. Effect of Blending Ratio of Loblolly Pine Wood and Bark on the Properties of Pyrolysis Bio-oils. Fuel Process Technol 2017;167:43–9.
[104] DeSisto WJ, II NH, Beis SH, Mukkamala S, Joseph J, Baker C, et al. Fast Pyrolysis of Pine Sawdust in a Fluidized-Bed Reactor. Energy Fuels 2010;24:2642–51.
[105] Kantarelis E, Yang W, Blasiak W. Production of Liquid Feedstock from Biomass via Steam Pyrolysis in a Fluidized Bed Reactor. Energy Fuels 2013;27:4748–59.
[106] Hu D, Zeng X, Wang F, Haruna Adamu M, Xu G. Comparison of Tar Thermal Cracking and Catalytic Reforming by Char in a Micro Fluidized Bed Reaction Analyzer. Fuel 2021;290:120038.
[107] Clissold J, Jalalifar S, Salehi F, Abbassi R, Ghodrat M. Fluidisation Characteristics and Inter-Phase Heat Transfer on Product Yields in Bubbling Fluidised Bed Reactor. Fuel 2020;273:117791.
[108] Ábrego J, Atienza-Martínez M, Plou F, Arauzo J. Heat Requirement for Fixed Bed Pyrolysis of Beechwood Chips. Energy 2019;178:145–57.
[109] Rath J, Wolfinger MG, Steiner G, Krammer G, Barontini F, Cozzani V. Heat of Wood Pyrolysis. Fuel 2003;82:81–91.
[110] Daugaard DE, Brown RC. Enthalpy for Pyrolysis for Several Types of Biomass. Energy Fuels 2003;17:934–9.
[111] Heidari A, Stahl R, Younesi H, Rashidi A, Troeger N, Ghoreyshi AA. Effect of Process Conditions on Product Yield and Composition of Fast Pyrolysis of Eucalyptus Grandis in Fluidized Bed Reactor. J Ind Eng Chem 2014;20:2594–602.
[112] Park HJ, Park Y-K, Dong J-I, Kim J-S, Jeon J-K, Kim S-S, et al. Pyrolysis Characteristics of Oriental White Oak: Kinetic Study and Fast Pyrolysis in a Fluidized Bed with an Improved Reaction System. Fuel Process Technol 2009;90:186–95.
[113] Diao R, Li S, Deng J, Zhu X. Interaction and Kinetic Analysis of Co-Gasification of Bituminous Coal with Walnut Shell under CO2 Atmosphere: Effect of Inorganics and Carbon Structures. Renew Energy 2021;173:177–87.
[114] Chen X, Liu L, Zhang L, Zhao Y, Xing C, Jiao Z, et al. Effect of Active Alkali and Alkaline Earth Metals on Physicochemical Properties and Gasification Reactivity of Co-Pyrolysis Char from Coal Blended with Corn Stalks. Renew Energy 2021;171:1213–23.
[115] Koornneef J, Junginger M, Faaij A. Development of Fluidized Bed Combustion—An Overview of Trends, Performance and Cost. Prog Energy Combust Sci 2007;33:19–55.
[116] Wang X, Kersten SRA, Prins W, van Swaaij WPM. Biomass Pyrolysis in a Fluidized Bed Reactor. Part 2: Experimental Validation of Model Results. Ind Eng Chem Res 2005;44:8786–95.
[117] Hu W, Feng Z, Yang J, Gao Q, Ni L, Hou Y, et al. Combustion Behaviors of Molded Bamboo Charcoal: Influence of Pyrolysis Temperatures. Energy 2021;226:120253.
[118] He Q, Guo Q, Umeki K, Ding L, Wang F, Yu G. Soot Formation during Biomass Gasification: A Critical Review. Renew Sustain Energy Rev 2021;139:110710.
[119] Fernandez-Akarregi AR, Makibar J, Lopez G, Amutio M, Olazar M. Design and Operation of a Conical Spouted Bed Reactor Pilot Plant (25 kg/h) for Biomass Fast Pyrolysis. Fuel Process Technol 2013;112:48–56.
[120] Treedet W, Suntivarakorn R. Design and Operation of a Low Cost Bio-Oil Fast Pyrolysis from Sugarcane Bagasse on Circulating Fluidized Bed reactor in a Pilot Plant. Fuel Process Technol 2018;178:17–31.
[121] Wang N, Si H, Yi W, Li Y, Zhang Y. Design and Operation of a Mobile Fast Pyrolysis System Utilizing a Novel Double Pipe Fluidized Bed Reactor. Fuel Process Technol 2021;224:107005.
[122] Cai W, Liu R, He Y, Chai M, Cai J. Bio-oil Production from Fast Pyrolysis of Rice Husk in a Commercial-Scale Plant with a Downdraft Circulating Fluidized Bed Reactor. Fuel Process Technol 2018;171:308–17.
指導教授 Hsiau Shu-San Yang Shouyin(Shu-San Hsiau Shouyin Yang) 審核日期 2022-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明