博碩士論文 109328007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.147.66.178
姓名 施駿凱(Jyun-Kai Shih)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 熱鍛預成型設計及顯微組織分析- 以避震器鋁冠鍛件之材料使用率提升為例
(Preform design with increased materials utilization and microstructure analysis for hot forged aluminum crown of shock absorber assembly)
相關論文
★ 快速鑄造與單/雙蠟注射成型在歧管熔模鑄造中尺寸一致性的比較★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究
★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試★ 無心研磨製程參數優化研究
★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例★ 精密熱鍛模擬及模具合理化分析
★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究★ 模組化滾針軸承自動組裝設備設計開發與功能驗證
★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究★ 雷射焊補運用於壓鑄模具壽命改善研究
★ 晶粒成長行為對於高功率元件可靠度改善的驗證★ HF-ERW製管製程分析及SCADA 工業4.0運用
★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測★ 精密閥件射出成形製程開發-CAE模擬與開模驗證
★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-16以後開放)
摘要(中) 本論文以量產製造的自行車避震器鋁冠鍛件為研究,進行了數值分析及鍛造實驗。提出預成型設計方案,以提高鍛件產品之品質並減少生產下料重量,降低加工之製造成本。由於傳統的製程下料過重而毛邊過大之問題,故此研究提出一種具透過有限元(FE)模擬軟體對材料流動、應力和有效應力分佈進行數值分析,再結合軟體之子程序模擬,從不同溫度和應變下的得到了功率耗散值極不穩定性的數值參數,分析了材料成型性、鍛件缺陷及微觀組織結構。透過數值分析對傳統圓棒鍛造進行生產下料尺寸之分析,並分析其產品材料流動及體積分配,並提出設計之預成型方案。
最終透過數值分析結果與實驗鍛造進行驗證,數值分析有效的預測了鍛件之充填性不足及夾料(包料)之缺陷,最終滿足鍛造產品精度公差及產品品質之要求的預成型設計,預成型設計可有效節省材料重量10.26%,材料使用率從79.01%提升至88.08%,改善了毛邊過大之問題並有效降低了鍛造負荷達12.40%,並透過加工圖(processing map)結果分析,鍛件中心圓之應變、應力及溫度條件下可獲得較佳之微觀結構。
摘要(英) In this article the conventional aluminum crown forging process for mass production of shock absorber assembly is experimentally and numerically studied. The preform design method was proposed to improve the quality of post-forged product, save the material weight, and decrease manufacturing cost for finishing process. Finite element (FE) simulation software was employed to numerically analyze the material flow lines, strain, temperature, and effective stress distribution to reduce time and cost in obtaining the optimized preform design. Furthermore, the software is used to extract the numerical results power dissipation efficiency and instability from the processing map analysis of stress-strain rate material data in different temperatures and strains, which are useful parameters to analyze formability and microstructures of material. The numerical results have accurately predicted the poor quality and serious underfilling defects in the conventional post-forged product. Then, the new preform designs were proposed based on the previous numerical analysis, and finally the optimized preform design that successfully met precision tolerances and satisfied quality requirements was achieved. The optimized preform design saves material weight up to 10.26%, increases material utilization from 79.01% to 88.08% which improves the problem of excessive flash in the conventional case, and reduces the forging load up to 12.40%. Processing map analysis shows that the fine grain size microstructures can be obtained under stress, strain and temperature conditions that are similar to area around center circular which is also validated well in microstructure examinations.
關鍵字(中) ★ 預成型設計
★ 熱鍛鋁冠鍛件
★ 腳踏車避震器總成
★ 加工圖分析
關鍵字(英) ★ Preform design
★ Aluminum crown forging
★ Shock absorber assembly
★ Shock absorber assembly
論文目次 目錄
摘要 I
ABSTRACT II
誌謝 IV
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與方法 2
第二章 文獻回顧 4
2-1 鋁及鋁合金特性與分類 4
2-1-1鋁合金特性 4
2-1-2 鋁合金分類 4
2-2 鍛造加工製程 6
2-3 有限元素分析 9
2-4 預成型設計 10
2-4-1 預成型設計之流程圖 10
2-4-2 預成型優化目標 11
2-4-3 預成型設計相關文獻 12
2-5 加工圖PROCESSING MAP 13
第三章 材料與實驗設置 14
3-1 實驗材料 14
3-2 實驗設備 15
3-3 鍛造成形模具 23
第四章 預成型設計模擬結果與實驗探討 25
4-1 鍛件之製程設計 25
4-1-1 鍛造製程設計 25
4-1-2 有限元素分析之參數 30
4-2 預成型設計實驗 33
4-2-1 鍛造缺陷與下料尺寸 33
4-2-2 預成型胚料設計 35
4-2-3 模擬結果與實驗驗證 40
4-2-4 微觀組織及機械性質之探討 43
第五章 結論 51
參考文獻 53
參考文獻 參考文獻
[1] Ozturk, F., Sisman, A., Toros, S., Kilic, S., & Picu, R. C. Influence of aging treatment on mechanical properties of 6061 aluminum alloy., Materials and Design 31 2010;972–975.
[2] ASM Handbook , Property and selection:Nonferrous Alloys and Pure Metals, ASM,Vol.2 9th pp.1-236, 1979.
[3] 許源泉,鍛造學理論與實習,三民書局,1990
[4] 金屬工業發展中心,鍛造技術,經濟部國際貿易局,1981
[5] 周俊宏,金屬二次加工Technology roadmap專題研究-沖壓、鍛造,經濟部,2002
[6] Y.-K. Fuh, C.-P. Chen, W.-L. Wu, M.-S. Ho, C.-S. Tzeng, A Controlled Material Flow Forming Mechanism of Curve Cutter Forging in The Hot Impression Forging of The Medical Instrument, (2021).
[7] J. Xu, W. Xu, J. Li, X. Zeng, K. Li, D. Shan, Preform design and microstructure-property analysis for isothermal extrusion of complex box-shaped components, The International Journal of Advanced Manufacturing Technology, 114 (2021) 2339-2356.
[8] M. Sedighi, S. Tokmechi, A new approach to preform design in forging process of complex parts, Journal of materials processing technology, 197 (2008) 314-324.
[9] N. Biba, A. Vlasov, D. Krivenko, A. Duzhev, S. Stebunov, Closed die forging preform shape design using isothermal surfaces method, Procedia Manufacturing, 47 (2020) 268-273.
[10] PANDYA, Vishal A.; GEORGE, P. M. Effect of preform design on forging load and effective stress during closed die hot forging process of pin. Materials Today: Proceedings, (2021), 44: 106-112.
[11] W. Sun, L. Chen, T. Zhang, K. Zhang, G. Zhao, G. Wang, Preform optimization and microstructure analysis on hot precision forging process of a half axle flange, The International Journal of Advanced Manufacturing Technology, 95 (2018) 2157-2167.
[12] Y.J. Guo, L. Deng, X.Y. Wang, J.S. Jin, W.W. Zhou, Hot deformation behavior and processing maps of 7050 aluminum alloy, in: Advanced Materials Research, Trans Tech Publ, (2013), pp. 37-42.
[13] A. Łukaszek-Sołek, J. Krawczyk, T. Śleboda, J. Grelowski, Optimization of the hot forging parameters for 4340 steel by processing maps, Journal of Materials Research and Technology, 8 (2019) 3281-3290.
[14] B. Wu, M. Li, D. Ma, The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy, Materials Science and Engineering: A, 542 (2012) 79-87.
[15] P. Gao, M. Fei, X. Yan, S. Wang, Y. Li, L. Xing, K. Wei, M. Zhan, Z. Zhou, Z. Keyim, Prediction of the folding defect in die forging: a versatile approach for three typical types of folding defects, Journal of Manufacturing Processes, 39 (2019) 181-191.
[16] F. Chen, F. Ren, J. Chen, Z. Cui, H. Ou, Microstructural modeling and numerical simulation of multi-physical fields for martensitic stainless steel during hot forging process of turbine blade, The International Journal of Advanced Manufacturing Technology, 82 (2016) 85-98.
[17] X. Hu, L. Hua, X. Han, Study on the microstructure and texture evolution of hot forged 20CrMnTiH steel spur bevel gear by simulation and experiment, Journal of Materials Engineering and Performance, 29 (2020) 3688-3701.
[18] P.-w. Li, H.-z. Li, L. Huang, X.-p. Liang, Z.-x. Zhu, Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map, Transactions of Nonferrous Metals Society of China, 27 (2017) 1677-1688.
[19] X. Chen, Y. Si, R. Bai, X. Zhang, Z. Li, Hot Formability Study of Cr5 Alloy Steel by Integration of FEM and 3D Processing Maps, Materials, 15 (2022) 4801.
[20] S. GÜndÜz, A. Çapar, Influence of forging and cooling rate on microstructure and properties of medium carbon microalloy forging steel, Journal of Materials Science, 41 (2006) 561-564.
[21] R.E. Sanders, Technology innovation in aluminum products, Jom, 53 (2001) 21-25.
[22] O.M. Ikumapayi, E.T. Akinlabi, P. Onu, Emerging trend in forging operation, in: Advances in Manufacturing Engineering, Springer, 2020, pp. 161-170.
[23] Z. Gronostajski, Z. Pater, L. Madej, A. Gontarz, L. Lisiecki, A. Łukaszek-Sołek, J. Łuksza, S. Mróz, Z. Muskalski, W. Muzykiewicz, Recent development trends in metal forming, Archives of Civil and Mechanical Engineering, 19 (2019) 898-941.
[24] L. Deng, X. Wang, J. Jin, J. Xia, Precision forging technology for aluminum alloy, Frontiers of Mechanical Engineering, 13 (2018) 25-36.
[25] Y.C. Lin, L.T. Li, Y.C. Xia, Y.Q. Jiang, Hot deformation and processing map of a typical Al-Zn-Mg-Cu alloy, Journal of Alloys and Compounds 550(2013) 438-445.
[26] P.A. Babu, M. Saraf, K. Vora, S.M. Chaurasiya, P. Kuppan, Influence of forging parameters on the mechanical behavior and hot forgeability of aluminium alloy, Materials Today: Proceedings, 2 (2015) 3238-3244.
[27] M. Poursina, J. Parvizian, Simulation of folding defect in forging, in: AIP Conference Proceedings, American Institute of Physics, 2004, pp. 486-491.
[28] D Sang, R Fu, Y Li, The hot deformation activation energy of 7050 aluminum alloy under three different deformation modes. Metals, (2016) 6.3: 49.
[29] H Gong, X Cao, Y Liu, Y Wu, F Jiang, M Zhang, Simulation and Experimental Study on the Inhomogeneity of Mechanical Properties of Aluminum Alloy 7050 Plate. Metals (2020) 10.4: 515.
[30] B.-A. Behrens, Finite element analysis of die wear in hot forging processes, CIRP annals, 57 (2008) 305-308.
[31] Z. Gronostajski, M. Kaszuba, M. Hawryluk, M. Marciniak, M. Zwierzchowski, A. Mazurkiewicz, J. Smolik, Improving durability of hot forging tools by applying hybrid layers, Metalurgija, 54 (2015) 687-690.
[32] J. Smolik, Hybrid surface treatment technology for increase of hot forging dies, Archives of Metallurgy and Materials, 57 (2012) 657-664.
[33] W.-P. Dong, C. Jun, 3D FEA simulation of 4A11 piston skirt isothermal forging process, Transactions of Nonferrous Metals Society of China, 18 (2008) 1196-1200.
[34] S.-W. Lee, J.-W. Jo, M.-S. Joun, J.-M. Lee, Effect of friction conditions on material flow in FE analysis of Al piston forging process, International Journal of Precision Engineering and Manufacturing, 20 (2019) 1643-1652.
[35] J. Xu, W. Xu, J. Li, X. Zeng, K. Li, D. Shan, Preform design and microstructure-property analysis for isothermal extrusion of complex box-shaped components, The International Journal of Advanced Manufacturing Technology, 114 (2021) 2339-2356.
[36] G. Angella, A. Di Schino, R. Donnini, M. Richetta, C. Testani, A. Varone, AA7050 Al alloy hot-forging process for improved fracture toughness properties, Metals, 9 (2019) 64.
[37] M. Hawryluk, J. Ziemba, Possibilities of application measurement techniques in hot die forging processes, Measurement, 110 (2017) 284-295.
[38] I. Konstantinov, S. Sidelnikov, D. Voroshilov, S. Belyaev, Y.V. Gorokhov, I.Y. Gubanov, V. Belokopytov, E. Ivanov, M. Voroshilova, Use of computer simulation for modernization technology of aluminum alloys hot die forging, The International Journal of Advanced Manufacturing Technology, 107 (2020) 1641-1647.
[39] R. Lin, B. Liu, J. Zhang, S. Zhang, Microstructure evolution and properties of 7075 aluminum alloy recycled from scrap aircraft aluminum alloys, Journal of Materials Research and Technology, 19 (2022) 354-367.
[40] R. Branco, J. Costa, L. Borrego, S. Wu, X. Long, F. Zhang, Effect of strain ratio on cyclic deformation behaviour of 7050-T6 aluminium alloy, International Journal of Fatigue, 129 (2019) 105234.
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2022-9-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明