博碩士論文 109330605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.12.71.78
姓名 Guo Shuqi(Henny Mellini)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 用於表面電漿共振光譜的多層金鋁薄膜的設計與優化
(Design and Optimization of Multilayer Gold and Aluminum Thin Films for Surface Plasmon Resonance Spectroscopy)
相關論文
★ 凝膠濃度對胎盤幹細胞貼附及分化之影響★ 摻雜銀或銀銅氮氧化鉭薄膜之製備、特性分析及抗菌行為分析
★ 以反應式磁控濺鍍製備Ag2O/TiO2疊層薄膜及其特性之研究★ 以射頻磁控濺鍍法製備銦鋅氧化物(IZO)透明導電薄膜並探討製程參數對其薄膜之影響
★ 以微陽極導引電鍍法沉積奈米氧化鋅薄膜★ 在一些氣候因素的預測和相關性的一些經濟和農業指標
★ Fabrication and Characterization of Polymethylmethacrylate (PMMA) Thin Film by Plasma Polymerization★ Effects of Diluted Ar in H2/SiH4 on Amorphous Hydrogenated Silicon Thin Film (i-layer) by an Inductive Coupled Plasma-Chemical Vapor Deposition (ICP-CVD) System
★ 評估貝里斯Rio Bravo保育管理區內硬木種類之樹高★ 以HFSS 天線模擬程式為設計LTE Band 41設計天線
★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究
★ Economic feasibility for recycling crystalline silicon photovoltaics modules★ 電漿聚合系統在不同功率下製成聚吡咯薄膜之特性及微結構分析
★ Structural Study on BaCeO3 Perovskite Thin Film by Sputtering★ 磁控濺射法製備氧氮化釩薄膜的製備和表徵
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 表面電漿激發元(SPR)共振光譜是一種極具前景的生物傳感技術,具有實時、無生化標記、靈敏和精確檢測等優點。基於在棱鏡和薄膜金屬界面處衰減的全反射產生的漸逝波場從理論上解釋了表面電漿體共振現象。 隨著金屬頂部的折射率發生變化,表面電漿共振的響應也會發生變化。可以通過觀察反射光譜來識別類型和濃度。
用於傳感器的電漿體材料主要是貴金屬,例如金或銀,其物理現象可藉由Drude的模型基於金屬表面局部電子的振盪提供解釋。由於其穩定性和敏感性,金是SPR最理想的材料,儘管其敏感性理論上不如銀高。金和玻璃基板之間的粘合金屬的常規選擇是鉻,但另一種選擇可以是鋁,因為它在可見光中的折射率較低。在這項研究中,我們製作並分析了鋁-金表面電漿共振傳感器的表面電漿共振性能,並與鉻金系統進行了比較。 實驗結果表明,鋁金表面電漿體共振傳感器對去離子水中乙醇濃度的微小變化更敏感。 這種鋁金表面電漿體共振傳感器的設計和製造對於提高當前鉻金表面電漿體共振傳感器的性能非常重要。
摘要(英) Surface plasmons resonance (SPR) spectroscopy is a highly promising technology in biosensing that provides many advantages with its real-time, label-free, sensitive, and precise detection. SPR phenomena were theoretically explained based on the attenuated total reflection (ATR) generated evanescent field at the prism and thin film metal interface. As the refractive index on the top of the metal changes, the response of the SPR will also change. The type and concentration can be identified by observing the spectrum of reflection.
Plasmonic materials used for sensors are mainly noble metals such as gold or silver, physically explained by Drude’s model based upon the oscillatory of localized electrons on the metal surface. Due to its stability and susceptibility, gold is the most ideal material for SPR, although its sensitivity is theoretically not as high as silver. A conventional choice for the adhesive metal between the gold and the glass substrate is chromium, but an alternative selection can be aluminum for its lower refractive index in visible light. In this study, we fabricated and analyze the SPR performance of Al-Au SPR sensors and made comparisons to the Cr-Au system. Experimental results indicate that the Al-Au SPR sensors are more sensitive to the minute changes in chemical concentrations of ethanol in DI water. The proposed design and fabrication of this Al-Au SPR sensor are very essential to improve the performance of current Cr-Au SPR sensors.
關鍵字(中) ★ 表面電漿體共振光譜
★ 漸逝場
★ 折射率
★ 多層薄膜
關鍵字(英) ★ Surface plasmons resonance spectroscopy
★ evanescent field
★ refractive index
★ multilayer
論文目次 Abstract i
摘要 ii
Acknowledgements iii
Table of Contents iv
List of Figures vii
List of Tables ix
Explanation of Symbols x
Chapter 1 Introduction 1
1.1 Surface Plasmon Resonance (SPR) 1
1.2 Measurement of SPR 2
1.3 Conventional SPR Materials 4
1.4 SPR for Detecting Organic Solutions 8
1.4.1 Mechanisms for Detection Organic Solutions by SPR 8
1.4.2 Methods of Functionalize SPR Films 9
1.4.3 Multi-step functionalization on SPR Films 10
1.5 Objective and Scope 12
1.5.1 Objective 12
1.5.2 Scope 12
1.6 Outline of Thesis 12
Chapter 2 Experiment Design and Methodology 13
2.1 Design of Thin Film System – Effects of Adhesion Layer 13
2.2 Deposition of Thin Films – Effects of Adhesion Layer 14
2.2.1 Substrate Preparation 14
2.2.2 Evaporation source (material) 14
2.2.3 Film Deposition 14
2.3 Design of Thin Film System – Effects of Oxide Layer 17
2.4 Deposition of Thin Films – Effects of Oxide Layer 17
2.5 Optical Measure for Surface Plasmon Resonance 18
2.5.1 Light source 18
2.5.2 Optical Emission Spectrometer 18
2.5.3 Flow cell and Layout of Testing Devices 18
2.5.4 Testing Solution 20
2.5.5 Calculation of Sensorgram from Optical Reflectance 21
Chapter 3 Results – Effects of Adhesion Layer 24
3.1 Cr-Au system 24
3.2 Al-Au system 26
3.3 Comparison Cr-Au system with Al-Au system 29
3.4 Summary 32
Chapter 4 Optimization Au Thickness 33
4.1 Introduction 33
4.2 Results 33
4.3 Summary 37
Chapter 5 Results – Effects of Oxide Layer 38
5.1 Direct Oxidation 38
5.2 Oxygen Plasma Treatment 40
5.3 Summary 43
Chapter 6 Discussion 44
6.1 Effect of Adhesion Layer 44
6.2 Optimization Au Thickness 46
6.3 Effect of Oxide Layer 47
Chapter 7 Conclusion 48
參考文獻 1. V. Yesudasu, H.S. Pradhan, R.J., Pandya. Recent progress in surface plasmon resonance based sensors: A comprehensive review, Heliyon. 2021; 7(3):1-13, e06321.
2. S. Deng, P. Wang, X. Yu. Phase-Sensitive Surface Plasmon Resonance Sensors: Recent Progress and Future Prospects, Sensors. 2017; 17(12):2819.
3. H. H. Nguyen, J. Park, S. Kang, M. Kim. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors. 2015; 15(5):10481-510.
4. B. Mondal, S. Zeng, Recent advances in Surface Plasmon Resonance for biosensing applications and future prospects. Nanophotonics in Biomed. Eng. 2020; 21-48
5. D.E. Meza-Sánchez, J.L. Maravillas-Montero. Clinical and Biomedical Applications of Surface Plasmon Resonance Systems. Rev. Invest. Clin. 2019; 71(2):85-90.
6. S. Mariani, M. Minunni. Surface plasmon resonance applications in clinical analysis. Anal. Bioanal. Chem. 2014; 406(9-10):2303–2323.
7. J. F. Masson. Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostic. ACS Sens. 2017; 2(1):16-30.
8. S. Gavrilaș, Ș. U. Claudiu, S. Perța-Crișan, F. Munteanu, Recent Trends in Biosensors for Environmental Quality Monitoring. Sensors. 2022; 22(4): 1513.
9. A. Olaru, C. Bala, N. Jaffrezic-Renault, H. Y. Aboul-Enein, Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit. Rev. Anal. Chem. 2015; 45(2):97-105.
10. N. Ravindran, S. Kumar, M. Yashini, S. Rajeshwari, C. A. Mamathi, T. S. Nirmal, C. K. Sunil. Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: a review. Crit. Rev. Food Sci. Nutr. 2021; 1-23.
11. R. Gaur, H. M. Padhy, Elayaperumal, M. Surface plasmon assisted toxic chemical NO2 gas sensor by Au/ZnO functional thin film. J. Sens. Sens. Syst. 2021, 10(2):163-169.
12. D. Wang, J. F. C. Loo, J. Chen, Y. Yam, S. C. Chen, H. He, S. K. Kong, H. P. Ho. Recent Advances in Surface Plasmon Resonance Imaging Sensors. Sensors. 2019; 19(6):1266.
13. B. A. Prabowo, A. Purwidyantri, K. C. Liu, Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. Biosensors. 2018; 8(3):80.
14. Y. Zeng, J. Zhou, W. Sang, W. Kong, J. Qu, H. P. Ho, K. Zhou, B. Z. Gao, J. Chen, Y. Shao. High-Sensitive Surface Plasmon Resonance Imaging Biosensor Based on Dual-Wavelength Differential Method. Front. Chem. 2021; 9:801355.
15. Y. H. Huang, H. P. Ho, S. Y. Wu, S. K. Kong, Detecting Phase Shifts in Surface Plasmon Resonance: A Review. Adv. Opt. Technol. 2012; 1-12.
16. P. Hofmann, Solid State Physics: An Introduction. Second Edition. Wiley, 2015.
17. M. G. Blaber, M. D. Arnold, M. J. Ford. Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver. J. Phys. Chem. C. 2009; 113(8): 3041-3045.
18. P. Benjamin, and C. Weaver. The Adhesion of Evaporated Metal Films on Glass. Proc. R. Soc. A: Math. Phys. Eng. Sci.. 1961; 261, no. 1307: 516–31.
19. N. R. Mohamad, G. S. Mei, N. A. Jamil, B. Y. Majlis, P. S. Menon. Influence of ultrathin chromium adhesion layer on different metal thicknesses of SPR-based sensor using FDTD. Mater. Today. 2018; 7:732-737.
20. P. Y. Kuryoz, L. V. Poperenko, V. G. Kravets, Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films. Phys. Status Solidi A. 2013; 210(11):2445=2455.
21. D. Barchiesi, T. Gharbi, D. Cakir, E. Anglaret, N. Fréty, S. Kessentini, R Maâlej. Performance of Surface Plasmon Resonance Sensors Using Copper/Copper Oxide Films: Influence of Thicknesses and Optical Properties. Photonics. 2022; 9(104):1-30.
22. E. P. Rodrigues, L. C. Oliveira, M. L. F. Silva, C. S. Moreira and A. M. N. Lima, Surface Plasmon Resonance Sensing Characteristics of Thin Copper and Gold Films in Aqueous and Gaseous Interfaces. IEEE Sens. J. 2020; 20(14):7701-7710.
23. A. S. Lambert, S. N. Valiulis, A. S. Malinick, I. Tanabe, and Q. Cheng. Plasmonic Biosensing with Aluminum Thin Films under the Kretschmann Configuration. Anal. Chem. 2020; 92(13):8654-8659.
24. I. Tanabe, Y.Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, Y. Ozaki. Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films. Sci. Rep. 7. 2017; 5934.
25. G. Qiu, S.P. Ng, C.L. Wu. Label-free surface plasmon resonance biosensing with titanium nitride thin film. Biosens. Bioelectron. 2018; 106:129-135.
26. A. Azrilawani and E. Moore. Electrochemical immunosensor modified with self-assembled monolayer of 11-mercaptoundecanoic acid on gold electrodes for detection of benzo[a]pyrene in water. Analyst. 2012; 137(24):5839-5844.
27. D. Blasi, L. Sarcina, A. Tricase, A. Stefanachi, F. Leonetti, D. Alberga, G. F. Mangiatordim K. Manoli, G. Scamarcio, R. A. Picca, L. Torsi. Enhancing the sensitivity of biotinylated surfaces by tailoring the design of the mixed self-assembled monolayer synthesis. ACS Omega. 2020; 5(27):16762–16771.
28. L. Nguyen. Application Note 123: Surface Plasmon Resonance Measurement of Protein-Peptide Interaction Using Streptavidin Sensor Chip. Biosensing Instrument, Inc. 2020.
29. C. Ciracì, X. Chen, J. J. Mock, F. McGuire, X. Liu, S.-H. Oh, D. R. Smith. Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers. Appl. Phys. Lett. 2014; 104(2):023109.
30. F. Matter, A. L. L. Barron, M. Niederberger. From colloidal dispersions to aerogels: How to master nanoparticle gelation. Nano Today. 2020; 30:100827.
31. E. Csapó, D. Sebők, J. M. Babic, F. Šupljika, G. Bohus, I. Dekany, N. Kallay, T. Preocanin. Surface and Structural Properties of Gold Nanoparticles and Their Biofunctionalized Derivatives in Aqueous Electrolytes Solution. J. Dispers. Sci. Technol.. 2014; 35(6):815-825.
32. K. Mondal, Metal Oxides for Biomedical and Biosensor Applications. First Edition. Elsevier, 2021.
33. B. Xie, R. Hu, Q. Chen, X. Yu, D. Wu, K. Wang, and X.-B. Luo. Design of a brightness-enhancement-film-adaptive freeform lens to enhance overall performance in direct-lit light-emitting diode backlighting. Appl. Opt. 2015; 54:5542-5548.
34. G. J. Park, Y. G. Kim, J. H. Yi, J. H. Kwon, J. H. Park, S. H. Kim, B. K. Kim, J. K. Shin, and H.S. Soh. Enhancement of the Optical Performance by Optimization of Optical Sheets in Direct-illumination LCD Backlight. J. Opt. Soc. Korea. 2009; 13(1):152-157.
35. T.A. Scott. Refractive index of ethanol-water mixtures and density and refractive index of ethanol-water-ethyl ether mixtures. J. Phys. Chem. 1946; 50(5):406-412.
36. B. A. Prabowo, R. Y. L. Wang, M. K. Secario, P. T. Ou, A. Alom, J. J. Liu, K. C. Liu. Rapid detection and quantification of Enterovirus 71 by a portable surface plasmon resonance biosensor. Biosens. Bioelectron. 2017; 92:186-191.
37. M. Geiger, M. Hagel, M., T. Reindl, J. Weis, R. T. Weitz, H. Solodenko, G. Schmitz, U. Zschieschang, H. Klauk, R. Acharcya. Optimizing the plasma oxidation of aluminum gate electrodes for ultrathin gate oxides in organic transistors. Sci. Rep. 2012; 11:6382
指導教授 李泉(Chuan Li) 審核日期 2022-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明