博碩士論文 107690604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.15.192.157
姓名 歐約瑟(Yoseph Arba Orke)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 氣候變遷對半乾旱地區水文氣候與乾旱的影響:衣索匹亞比拉特流域的案例研究
(Impact of Climate Change on Hydroclimate and Drought in Semiarid Regions: A case study in the Bilate Watershed, Ethiopia)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 降雨在Bilate Wathershed (BW)扮演著重要角色,是該地區農業用水的主要來源,而農業在半乾旱地區受到氣候變遷的影響下將面臨許多挑戰,如農業減產、缺水和糧食安全。近年來,BW經歷更加頻繁且劇烈的水文氣候變化,因此探討水文與氣象因子的變化趨勢與程度,有助於為水資源管理和農業生產提供重要資訊。本研究首先使用變異係數 (coefficient of variation) 和標準化異常指數 (standardized anomaly index) 評估降雨、溫度和流量的變化,再利用變異點檢測方法、Mann-Kendell 檢測和 Sen 斜率計算,以量化其改變點和趨勢則。氣候變遷對BW的水文氣候影響,利用SWAT (Soil and Water Assessment Tool) 模型進行水文模擬,氣候推估資料來自CORDEX (Coordinated Regional Downscaling Experiment ) 資料庫,採用兩個代表性排放情境 (RCP4.5 和 RCP8.5),評估 2021-2050 年和 2071-2100 年期間的氣候變化。對氣候變遷對乾旱的影響,則使用Standardized Precipitation Index (SPI)、Streamflow Drought Index (SDI) 和Reconnaissance Drought Index (RDI) 等三個乾旱指數來評估氣候變化對乾旱特徵的影響。
分析結果主要發現,Bega (乾季) 和Belg (次要雨季) 的降雨量和逕流變化率高於Kiremt (主要雨季),氣溫在 1990 年代初期為 0.91°C的上升趨勢,雨量在 1990年代後期有減少趨勢 (-11%),流量則在 2000年代有減少趨勢 (-42%) 的減少趨勢,檢測到的變化點可能與ENSO事件有關。趨勢檢定顯示溫度有顯著的上升,最低溫 (0.06°C/年)的年均增幅比最高溫 (0.02°C/年) 顯著增加,年降雨量和流量呈現明顯下降趨勢,分別為8.32毫米/年和3.64毫米/年。隨著氣溫的大幅上升和降雨量的減少,流域的流量一直在減少,導致可用水量減少。前述變化趨勢對水資源管理和農業活動,應審慎考慮溫度升高與降雨量減少使可用水量更加不穩定,提早擬定調適措施。
使用RCP8.5的氣變推估情境,氣溫將大幅上升,到21世紀蒸發量將增加16.8%,預計年平均降雨量將減少38.3%,導致流量減少高達37.5%,日夜溫差變小可能有利於作物生長,但同時也會因高溫產生不利影響。氣候變遷下,三種不同乾旱指數的強度皆增加,顯示未來乾旱的發生機率在遠期將更高,這些預期影響將加劇水資源短缺並對糧食安全產生衝擊,本研究結果包含過去氣候水文變化趨勢及未來氣變衝擊影響之水文氣候與乾旱,可以提供水資源管理當局和決策者提供可信賴的量化資訊,以盡早擬訂因應未來氣候變遷的有效調適措施。
摘要(英) The livelihood of communities in the Bilate Watershed (BW) depends mainly on rain-fed agriculture. The effects of the erratic nature of hydroclimatic variables, such as reduction of agricultural production, scarcity of water, and food insecurity, are widespread in the semi-arid regions. The Bilate Watershed has experienced more frequent and intense spatiotemporal hydroclimatic variability in recent years. Therefore, it is essential to understand variations in hydrometeorological variables to provide crucial information for water management and agriculture. The coefficient of variation (CV) and the standardized anomaly index (SAI) were used to assess the variability of rainfall, temperature, and streamflow. Changing point detection methods, the Mann–Kendell test, and Sen’s slope estimator were employed to detect shifting points and trends of the variables in the watershed. The impact of climate change on hydrometeorology of the Bilate Watershed was assessed by the Soil and Water Assessment Tool (SWAT) model using climate projections under two Representative Concentration Pathways (RCP4.5 and RCP8.5) obtained from the Coordinated Regional Downscaling Experiment (CORDEX) Africa during 2021-2050 and 2071-2100. Moreover, the impact of climate change on droughts characteristics was also assessed by applying three drought indices such as the standardized precipitation index (SPI), streamflow drought index (SDI), and reconnaissance drought index (RDI).
Rainfall and streamflow showed higher variability in the Bega (dry season) and Belg (minor rainy season) than in the Kiremt (main rainy season). Temperature exhibited an upward shift of 0.91 °C in the early 1990s. A decline in rainfall (-11%) and streamflow (-42%) were found after changing points around the late 1990s and 2000s. The changing points detected were likely related to the ENSO events. The trend test identified a significant increase in temperature with a faster increase in minimum temperature (0.06 °C/year) than maximum temperature (0.02 °C/year). Average annual rainfall and streamflow showed significant declining trends of 8.32 mm/year and 3.64 mm/year. With this substantial increase in temperature and decline in rainfall, the watershed has been experiencing a reduction in streamflow and exacerbating the lack of available water. Adaptation measures should be developed by considering the increasing temperature and rainfall′s declining and erratic nature for water management and agricultural activities.
Due to the profound rise in temperature under the RCP8.5 scenario, evapotranspiration will increase by 16.8% by the end of the 21st century. Average annual rainfall is projected to decrease by 38.3%, leading to a decrease in streamflow up to 37.5%. Projections in reduced diurnal temperatures may benefit crop growth but intensify heat stress. The probability of drought is expected to double in the far period with increased intensity for all three drought types. These expected impacts will exacerbate water scarcity and threaten food security in the study area. The study results provide promising quantitative information to water management authorities and decision-makers to develop adaptive measures to cope with the changing climate.
關鍵字(中) ★ rainfall
★ temperature
★ streamflow
★ variability
★ changing points
★ Mann-Kendall test
★ hydrological impacts
★ RCPs
★ SWAT model
關鍵字(英)
論文目次 Contents
摘 要 iv
Abstract v
Acknowledgments vii
Table of Contents ix
List of Figures xi
List of Tables xiv
List of Acronyms and Symbols xv
Chapter 1. Introduction 1
1.1 Background 1
1.2 Motivation 7
1.3 Objectives 12
1.4 Structure of the Dissertation 13
Chapter 2. Literature Review 14
2.1 Hydroclimatic Variability 14
2.2 Drought 18
2.3 Climate Change 22
2.4 Climate Models 23
2.5 Climate Change Scenarios 25
2.6 The Expected Impacts of Climate Change 27
2.7 Hydrological Model 28
Chapter 3. Study Area 32
3.1 Drainage Basins of Ethiopia 32
3.2 Rift Valley Lakes Basin 34
3.3 Bilate Watershed 35
3.3.1 Hydroclimate of the Bilate Watershed 37
3.3.2 Land Use Land Cover and Soil Types of the Bilate Watershed 38
3.3.3 Geology of the Bilate Watershed 39
4. Data and Methodology 41
4.1 Data 41
4.1.1 Hydroclimatological Data 41
4.1.2 Spatial Data 41
4.1.3 Climate Models and RCPs Emission Scenarios 42
4.2 .Methodology 43
4.2.1 Hydroclimatic Variability Analysis 44
4.2.2 Model Bias Correction of Climate Change Projections 50
4.2.3 The SWAT Hydrological Model 53
4.2.4 Drought Analysis 58
5. Results and Discussion 65
5.1 Results 65
5.1.1 Variability Analysis 65
5.1.2 Changing Point Detection Tests 71
5.1.3 Implication of Changes in Hydrological Cycles 76
5.1.4 Trend Analysis 77
5.1.5 SWAT Calibration and Validation 82
5.1.6 Climate Change Impact Assessment 84
5.1.7 Climate Change Impact on Droughts Characteristics 95
5.2 Discussion 98
5.2.1 Variability Analysis of Hydroclimatic Variables 98
5.2.2 Detection of Hydroclimatic Variables Changing Points 99
5.2.3 Hydroclimatic Variables Trend Analysis 100
5.2.4 Impact of Climate Change on Hydroclimate 102
5.2.5 Impacts of Climate Change on Droughts characteristics 105
Chapter 6. Conclusions and Future Works 110
6.1 Hydroclimatic Variability in the Bilate Watershed, Ethiopia 111
6.2 Impact of Climate Change on Hydrometeorology and Droughts in the Bilate Watershed, Ethiopia 112
6.3 Recommendations and Future works 114
References 116
Appendix 143
參考文獻 Abbaspour, Karim C 2008. "SWAT calibration and uncertainty programs A User Manual." In, 1-100. Eawag Zurich, Switzerland: Swiss federal institute of aquatic science and technology. https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf (accessed, 12-09-2021).
Abbaspour, Karim C, Saeid Ashraf Vaghefi, and Raghvan Srinivasan. 2018. ′A guideline for successful calibration and uncertainty analysis for soil and water assessment: a review of papers from the 2016 international SWAT conference′, 10: 1-18. https://doi.org/10.3390/w10010006
Abebe, Endalkachew, and Asfaw Kebede. 2017. ′Assessment of climate change impacts on the water resources of megech river catchment, Abbay Basin, Ethiopia′, OJMH, 7: 141-52. https://doi.org/10.4236/ojmh.2017.72008
Abraham, Lijalem Zeray, Jackson Roehrig, and Dilnesaw Alamirew Chekol. 2006. ′Climate change impact on Lake Ziway watershed water availability, Ethiopia′, Institute for Technology in the Tropics, University of Applied Science. https://www.researchgate.net/publication/267774054_Climate_Change_Impact_on_LakeZiway_watershed_Water_Availability_Ethiopia (accessed, 01-04-2021).
Abraham, T, A Woldemicheala, A Muluneha, and B Abateb. 2018. ′Hydrological responses of climate change on Lake Ziway catchment, Central Rift Valley of Ethiopia′, J. Earth Sci Clim. Change, 9: 1-16. https://doi.org/10.4172/2157-7617.1000474
Abraham, Tesfalem, Brook Abate, Abraham Woldemicheal, and Alemayehu Muluneh. 2018. ′Impacts of Climate Change under CMIP5 RCP Scenarios on the Hydrology of Lake Ziway Catchment, Central Rift Valley of Ethiopia′, J. Environ. Earth Sci., 8: 1-16. https://doi.org/10.4172/2157-7617.1000474
Abraham, Tesfalem, Yan Liu, Sirak Tekleab, and Andreas Hartmann. 2021. ′Quantifying the regional water balance of the Ethiopian Rift Valley Lake basin using an uncertainty estimation framework′, J. Hydrol. Earth Syst. Sci. Discuss., 10: 1-25. https://doi.org/10.5194/hess-2021-271
Abramowitz, Milton, and Irene A Stegun. 1965. Handbook of mathematical functions with formulas, graphs, and mathematical tables (Dover Publications Inc.: New York). https://doi.org/10.1063/1.3047921
Abtew, Wossenu, Assefa M Melesse, and Dessalegne. 2009. ′El Niño southern oscillation link to the Blue Nile River basin hydrology.′, J. Hydrol. Process., 23: 3653-60. https://doi.org/10.1002/hyp.7367
Adams, Richard M, and Dannele E Peck. 2008. "Effects of climate change on water resources." In Choices, 12-14. USA: Agricultural & Applied Economics Association (AAEA). https://doi.org/10.3390/w13213103
Adeboye, Omotayo B, and Michael O Alatise. 2007. ′Performance of probability distributions and plotting positions in estimating the flood of river Osun at Apoje Sub-basin, Nigeria′, Int. J. Agric. Eng., 9: 1-21. https://cigrjournal.org/index.php/Ejounral/article/download/879/873 (accessed, 04-02-2021).
Agency, Disaster Prevention and Preparedness. 2006. "Flash appeal for the 2006 flood disaster in Ethiopia." In, 1-29. Addis Ababa,Ethiopia: Joint government and humanitarian partners. https://pdf.usaid.gov/pdf_docs/pnaec413.pdf (accessed, 08-01-2021).
Aguilar, C, and MJ Polo. 2011. ′Generating reference evapotranspiration surfaces from the Hargreaves equation at watershed scale′, J. Hydrol. Earth Syst. Sci., 15: 2495-508. https://doi.org/10.5194/hess-15-2495-2011
Ahmad, Ijaz, Deshan Tang, TianFang Wang, Mei Wang, and Bakhtawar Wagan. 2015. ′Precipitation trends over time using Mann-Kendall and spearman’s rho tests in swat river basin, Pakistan′, J. Adv. Meteorol., 2015: 1-15. https://doi.org/10.1155/2015/431860
Aich, V, S Liersch, T Vetter, S Huang, Julia Tecklenburg, P Hoffmann, H Koch, S Fournet, Valentina Krysanova, and EN Müller. 2014. ′Comparing impacts of climate change on streamflow in four large African river basins′, J.Hydrol. Earth Syst. Sci., 18: 1305-21.https://doi.org/ doi.org/10.5194/hess-18-1305-2014
Al-Hasani, Alaa 2020. ′Trend analysis and abrupt change detection of streamflow variations in the lower Tigris River Basin, Iraq′, Int. J. River Basin Manag., 19 523-34. https://doi.org/10.1080/15715124.2020.1723603
Alahacoon, Niranga, Mahesh Edirisinghe, Matamyo Simwanda, ENC Perera, Vincent R Nyirenda, and Manjula Ranagalage. 2022. ′Rainfall Variability and Trends over the African Continent Using TAMSAT Data (1983–2020): Towards Climate Change Resilience and Adaptation′, J. Remote Sens., 14: 1-26. https://doi.org/10.3390/rs14010096
Alemseged, Tamiru Haile, and Rientjes Tom. 2015. ′Evaluation of regional climate model simulations of rainfall over the Upper Blue Nile basin′, J. Atmos. Res., 161: 57-64. https://doi.org/10.1016/j.atmosres.2015.03.013
Alemu, Melkamu Meseret, and Getnet Taye Bawoke. 2020. ′Analysis of spatial variability and temporal trends of rainfall in Amhara region, Ethiopia′, J. Water Clim. Change, 11: 1505-20. https://doi.org/10.2166/wcc.2019.084
Alemu, Zinabu Assefa, and Michael Dioha. 2020. ′Climate change and trend analysis of temperature: the case of Addis Ababa, Ethiopia′, J. Environ. Syst. Res., 9: 1-15. https://doi.org/10.1186/s40068-020-00190-5
Alexandersson, Hans, and Anders Moberg. 1997. ′Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends′, Int. J. Climatol., 17: 25-34. https://doi.org/10.1002/(SICI)1097-0088(199701)17:1-25::AID-JOC103-3.0.CO;2-J (accessed, 15-03-2021).
Allen, RG, LS Pereira, D Raes, and M Smith. 1998. ′Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO-Food and Agriculture Organisation of the United Nations, Rome (http://www. fao. org/docrep) ARPAV (2000), La caratterizzazione climatica della Regione Veneto, Quaderni per′. https://www.arpa.veneto.it/temi-ambientali/agrometeo/file-e-allegati/atlante-precipitazioni/22_Bibliografia.pdf (accessed,15-09-2021).
Almazroui, M, HM Hasanean, AK Al-Khalaf, and H Abdel Basset. 2013. ′Detecting climate change signals in Saudi Arabia using mean annual surface air temperatures′, Theor. Appl. Climatol., 113: 585-98. https://doi.org/ 10.1007/s00704-012-0812-x
Althoff, Ingrid, and Gerd Förch. 2009. "Water Balance Modelling in the Southern Ethiopian Rift Valley: the example of Bilate River Catchment." In, 1-232. Centre for International Capacity Development CICD Series, Universität Siegen. https://paperzz.com/doc/8930904/water-balance-modelling-in-the-southern-ethiopian-rift-va. (accessed, 07-03-2022).
Amsalu, Aklilu, and Alebachew Adem. 2009. "Assessment of climate change-induced hazards, impacts and responses in the southern lowlands of Ethiopia." In, 1-126. Addis Ababa: Forum for Social Studies (FSS). http://197.156.72.153:8080/xmlui/bitstream/handle/123456789/3075/36.pdf1abbyyy.pdf?sequence=1&isAllowed=y.
Anderson, Martha C, Cornelio A Zolin, Paulo C Sentelhas, Christopher R Hain, Kathryn Semmens, M Tugrul Yilmaz, Feng Gao, Jason A Otkin, and Robert Tetrault. 2016. ′The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts′, J. Remote Sens. Environ, 174: 82-99. https://doi.org/10.1016/j.rse.2015.11.034
Arnell, Nigel W, Sarah J Halliday, Richard W Battarbee, Richard A Skeffington, and Andrew J Wade. 2015. ′The implications of climate change for the water environment in England′, J. Prog. Phys. Geogr., 39: 93-120. https://doi.org/ 10.1177/0309133314560369
Arnell, Nigel W, Jason A Lowe, Andrew J Challinor, and Timothy Osborn. 2019. ′Global and regional impacts of climate change at different levels of global temperature increase′, J. Clim. Change, 155: 377-91. https://doi.org/10.1007/s10584-019-02464-z
Arnell, Nigel W, Detlef P van Vuuren, and Morna Isaac. 2011. ′The implications of climate policy for the impacts of climate change on global water resources′, J. Glob. Environ. Change, 21: 592-603. https://doi.org/10.1016/j.gloenvcha.2011.01.015
Arnold, Jeffrey G, Daniel N Moriasi, Philip W Gassman, Karim C Abbaspour, Michael J White, Raghavan Srinivasan, Chinnasamy Santhi, RD Harmel, Ann Van Griensven, and Michael W Van Liew. 2012. ′SWAT: Model use, calibration, and validation′, J. ASABE, 55: 1491-508. https://doi.org/ 10.13031/2013.42256
Arnold, Jeffrey G, Raghavan Srinivasan, Ranjan S Muttiah, and Jimmy R Williams. 1998. ′Large area hydrologic modeling and assessment part I: model development 1′, J.Am. Water Resour Assoc., 34: 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
Arsiso, Bisrat Kifle, Gizaw Mengistu Tsidu, Gerrit Hendrik Stoffberg, and Tsegaye Tadesse. 2017. ′Climate change and population growth impacts on surface water supply and demand of Addis Ababa, Ethiopia′, J. Clim. Risk Manag., 18: 21-33. https://doi.org/10.1016/j.crm.2017.08.004
Asfaw, Amogne, Belay Simane, Ali Hassen, and Amare Bantider. 2018. ′Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin′, J. Weather Earth Clim. Extreme, 19: 29-41. https://doi.org/10.1016/j.wace.2017.12.002
Ashraf Vaghefi, S, SJ Mousavi, KC Abbaspour, R Srinivasan, and H Yang. 2014. ′Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran′, J. Hydrol. Process, 28: 2018-32. https://doi.org/10.1002/hyp.9747
Awulachew, Seleshi Bekele, Aster Denekew Yilma, Makonnen Loulseged, Willibald Loiskandl, Mekonnen Ayana, and Tena Alamirew. 2007. Water resources and irrigation development in Ethiopia (Iwmi).
https://www.researchgate.net/publication/42765483_Water_Resources_and_Irrigation_Development_in_Ethiopia (accessed, 19-03-2022).
Ayele, Hailu Sheferaw. 2016. ′Assessing Climate Change Impacts on Hydrological Cycles of Lake
Tana, Upper Blue Nile Basin, Ethiopia′, National Central University. ir.lib.ncu.edu.tw:88/thesis/getfile.asp?date=2016-12-20&file=7350102686601.pdf
Ayele, Hailu Sheferaw, Ming-Hsu Li, Ching-Pin Tung, and Tzu-Ming Liu. 2016. ′Impact of climate change on runoff in the Gilgel Abbay watershed, the upper Blue Nile Basin, Ethiopia′, Water, 8: 1-16. https://doi.org/10.3390/w8090380
Ayenew, Tenalem, Molla Demlie, and Stefan Wohnlich. 2008. ′Hydrogeological framework and occurrence of groundwater in the Ethiopian aquifers′, J. African Earth Sci., 52: 97-113. https://doi.org/10.1016/j.jafrearsci.2008.06.006
Bartier, Patrick M, and C Peter Keller. 1996. ′Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW)′, J. Comput. Geosci., 22: 795-99. https://doi.org/10.1016/0098-3004(96)00021-0
Bates, Bryson, Zbigniew Kundzewicz, and Shaohong Wu. 2008. Climate change and water (Intergovernmental Panel on Climate Change Secretariat).
http://41.73.194.134/bitstream/handle/123456789/552/climate-change-water-en.pdf?sequence=1&isAllowed=y (accessed, 09-03-2022).
Bayissa, Yared, Shreedhar Maskey, Tsegaye Tadesse, Schalk Jan Van Andel, Semu Moges, Ann Van Griensven, and Dimitri Solomatine. 2018. ′Comparison of the performance of six drought indices in characterizing historical drought for the upper Blue Nile basin, Ethiopia′, J. Geosci., 8: 1-26. https://doi.org/10.3390/geosciences8030081
Bekele, B, W Wu, A Legesse, H Temesgen, and E Yirsaw. 2018. ′Socio-environmental impacts of land use/cover change in Ethiopian central rift valley lakes region, East Africa′, J. Appl. Ecol. Environ. Res . 16: 6607-32. http://dx.doi.org/10.15666/aeer/1605_66076632
Bekele, Daniel, Tena Alamirew, Asfaw Kebede, Gete Zeleke, and Assefa M Melese. 2017. ′Analysis of rainfall trend and variability for agricultural water management in Awash River Basin, Ethiopia′, J. Water Clim. Change, 8: 127-41. https://doi.org/10.2166/wcc.2016.044
Bekele, Daniel, Tena Alamirew, Asfaw Kebede, Gete Zeleke, and Assefa M Melesse. 2019. ′Modeling climate change impact on the Hydrology of Keleta watershed in the Awash River basin, Ethiopia′, Environ. Model. Assess., 24: 95-107. https://doi.org/10.1007/s10666-018-9619-1
Belihu, Mamuye, Brook Abate, Sirak Tekleab, and Woldeamlak Bewket. 2018. ′Hydro-meteorological trends in the Gidabo catchment of the Rift Valley Lakes Basin of Ethiopia′, J. Phys. Chem. Earth, 104: 84-101. https://doi.org/10.1007/s10666-018-9619-1
Belihu, Mamuye, Sirak Tekleab, Brook Abate, and Woldeamlak Bewket. 2020. ′Hydrologic response to land use land cover change in the Upper Gidabo Watershed, Rift Valley Lakes Basin, Ethiopia′, J. HydroResearch, 3: 85-94. https://doi.org/10.1016/j.hydres.2020.07.001
Berhane, Abadi, Gebre Hadgu, Walelign Worku, and Berhanu Abrha. 2020. ′Trends in extreme temperature and rainfall indices in the semi-arid areas of Western Tigray, Ethiopia′, J. Environ. Syst. Res., 9: 1-20. https://doi.org/10.1186/s40068-020-00165-6
Berhanu, Belete, Yilma Seleshi, and Assefa M Melesse. 2014. ′Surface water and groundwater resources of Ethiopia: potentials and challenges of water resources development.′ in, Nile River Basin: Ecohydrological Challenges, Climate Change and Hydropolitics (Springer: Florida, USA). https://doi.org/10.1007/978-3-319-02720-3_6
Betts, Alan K. 2011. "Climate change in Vermont." In Climate Change Adaptation White Paper Series, 1-17.https://alanbetts.com/workspace/uploads/vtccadaptclimatechangevtbetts-59cd0ce8385c2.pdf (accessed, 11-03-2022).
Beven, Keith J 2001. Rainfall-runoff modelling: the primer (Chichester, UK). https://www.wiley.com/enus/Rainfall+Runoff+Modelling%3A+The+Primer%2C+2nd+Edition-p-9780470714591 (accessed, 28-02-2022).
Beyene, Tazebe, Dennis P Lettenmaier, and Pavel Kabat. 2010. ′Hydrologic impacts of climate change on the Nile River Basin: implications of the 2007 IPCC scenarios′, J. Clim. Change, 100: 433-61. https://doi.org/10.1007/s10584-009-9693-0.
Bhuvandas, Nishi, Prafulkumar V Timbadiya, Prem L Patel, and Prakash D Porey. 2014. ′Review of downscaling methods in climate change and their role in hydrological studies′, J Int. J. Environ. Ecol. Geol. Mar. Eng., 8: 713-18.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.650.2920&rep=rep1&type=pdf (accessed, 03-03-2022).
Biazin, Birhanu, and Geert Sterk. 2013. ′Drought vulnerability drives land-use and land cover changes in the Rift Valley dry lands of Ethiopia′, J. Agric Ecosyst Environ, 164: 100-13. https://doi.org/10.1016/j.agee.2012.09.012
Blanco-Gómez, Pablo, Patricia Jimeno-Sáez, Javier Senent-Aparicio, and Julio Pérez-Sánchez. 2019. ′Impact of climate change on water balance components and droughts in the Guajoyo River Basin (El Salvador)′, J. Water, 11: 1-18. https://doi.org/10.3390/w11112360
Bogale, GA, and T Temesgen. 2021. ′Impacts and Challenges of Seasonal Variabilities of El Niño and La Niña on Crop and Livestock Production in The Central Rift Valley of Ethiopia: A Review′, Int J Environ Pollut, 5: 2.
Boko, M, I Niang, A Nyong, C Vogel, A Githeko, M Medany, B Osman Elasha, R Tabo, and P Yanda. 2007. ′Climate change: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change′, J. Environ. Qual., 37: 433–67. https://doi.org/10.2134/jeq2008.0015br
Bouslihim, Yassine, Aicha Rochdi, Namira El Amrani Paaza, and Lorena Liuzzo. 2019. ′Understanding the effects of soil data quality on SWAT model performance and hydrological processes in Tamedroust watershed (Morocco)′, J. Afr. Earth Sci., 160: 103616. https://doi.org/10.1016/j.jafrearsci.2019.103616
Brands, Swen, S Herrera, J Fernández, and José M Gutiérrez. 2013. ′How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa?′, J. Climate dynamics, 41: 803-17. https://doi.org/10.1007/s00382-013-1742-8
Brouwer, Roy, and Remco Van Ek. 2004. ′Integrated ecological, economic and social impact assessment of alternative flood control policies in the Netherlands′, J. Ecol. Econ., 50: 1-21. https://doi.org/10.1016/j.ecolecon.2004.01.020
Buishand, T Adri 1982. ′Some methods for testing the homogeneity of rainfall records′, J. Hydrol. Reg. Stud., 58: 11-27. https://doi.org/10.1016/0022-1694(82)90066-X
Camberlin, Pierre. 1997. ′Rainfall anomalies in the source region of the Nile and their connection with the Indian summer monsoon′, J. Clim., 10: 1380-92. https://doi.org/10.1175/1520-0442(1997)010<1380:RAITSR>2.0.CO;2
Carlos Mendoza, Juan Adriel, Tamar Anaharat Chavez Alcazar, and Sebastián Adolfo Zuñiga Medina. 2021. ′Calibration and Uncertainty Analysis for Modelling Runoff in the Tambo River Basin, Peru, Using Sequential Uncertainty Fitting Ver-2 (SUFI-2) Algorithm′, J. Air, Soil Water Res., 14: 1-13. https://doi.org/ 10.1177/1178622120988707
Carter, TR, K Alfsen, E Barrow, B Bass, X Dai, P Desanker, SR Gaffin, F Giorgi, M Hulme, and M Lal. 2007. "General guidelines on the use of scenario data for climate impact and adaptation assessment." In.: Finnish Environmental Institute, Helsinki, Finland, 1-71. https://www.ipcc-data.org/guidelines/TGICA_guidance_sdciaa_v2_final.pdf (accessed, 26-02-2022)
Cau, Pierluigi, and Claudio Paniconi. 2007. ′Assessment of alternative land management practices using hydrological simulation and a decision support tool: Arborea agricultural region, Sardinia′, J. Hydrol Earth Syst Sci., 11: 1811-23. https://doi.org/10.5194/hess-11-1811-2007
CCSA, Ethiopia. 2008. "Summary and statistical report of the 2007 population and housing census." In, 1-10. Addis Ababa, Ethiopia.
Cerezo-Mota, R, OB Christensen, M Dqu, J Fernandez, A Hnsler, E van Meijgaard, MB Sylla, and L Sushama. 2012. ′Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations′, J Clim. , 25: 1-22. https://doi.org/10.1175/JCLI-D-11-00375.1
Chaemiso, Shiferaw Eromo, Adane Abebe, and Santosh Murlidhar Pingale. 2016. ′Assessment of the impact of climate change on surface hydrological processes using SWAT: a case study of Omo-Gibe river basin, Ethiopia′, Model. Earth Syst. Environ., 2: 1-15. https://doi.org/ 10.1007/s40808-016-0257-9
Chattopadhyay, Somsubhra, Dwayne R Edwards, Yao Yu, and Ali Hamidisepehr. 2017. ′An assessment of climate change impacts on future water availability and droughts in the Kentucky River Basin′, J. Environ. Process., 4: 477-507. doi: https://doi.org/10.1007/s40710-017-0259-2
Christy, John R, William B Norris, and Richard T McNider. 2009. ′Surface temperature variations in East Africa and possible causes′, J. Clim., 22: 3342-56. https://doi.org/10.1175/2008JCLI2726.1
Cibin, R, KP Sudheer, and I Chaubey. 2010. ′Sensitivity and identifiability of streamflow generation parameters of the SWAT model′, J. Hydrol. Process., 24: 1133-48. https://doi.org/10.1002/hyp.7568
Collins, M Knutti, R L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, WJ, Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, AJ. 2013. " Long-term Climate Change: Projections, Commitments and Irreversibility." In, 1029-136.
https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter12_FINAL.pdf (accessed, 06-03-2022).
Conway, Declan, and E Lisa F Schipper. 2011. ′Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia′, J. Glob. Environ. Change, 21: 227-37. https://doi.org/10.1016/j.gloenvcha.2010.07.013
Cook, Benjamin I, Jason E Smerdon, Richard Seager, and Sloan Coats. 2014. ′Global warming and 21st century drying′, J. Clim. Dyn., 43: 2607-27. https://doi.org/ 10.1007/s00382-014-2075-y
Corti, Giacomo. 2009. ′Continental rift evolution: from rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa′, J. Earth-Sci. Rev., 96: 1-53. https://doi.org/10.1016/j.earscirev.2009.06.005
CSA. 2012. ′2007 Population and Housing Census of Ethiopia′: 1-125. https://rise.esmap.org/data/files/library/ethiopia/Documents/Clean%20Cooking/Ethiopia_Census%202007.pdf (accessed, 13-02-2022).
Dai, Aiguo. 2013. ′Increasing drought under global warming in observations and models′, J. Nat. Clim. Chang., 3: 52-58. https://doi.org/10.1038/NCLIMATE1633
Dai, Aiguo 2011. ′Drought under global warming: a review′, Wiley Interdiscip. Rev. Clim. Change, 2: 45-65. https://doi.org/10.1002/wcc.81
Dai, Aiguo, Kevin E Trenberth, and Taotao Qian. 2004. ′A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming′, J. Hydrometeorol., 5: 1117-30. https://doi.org/10.1175/JHM-386.1
Dalezios, NR, A Blanta, NV Spyropoulos, and AM Tarquis. 2014. ′Risk identification of agricultural drought for sustainable agroecosystems′, Natural Hazards and Earth System Sciences, 14: 2435-48. https://doi.org/10.5194/nhess-14-2435-2014
Davies, Evan GR, and Slobodan P Simonovic. 2011. ′Global water resources modeling with an integrated model of the social–economic–environmental system′, J. Adv. Water. Resour., 34: 684-700. https://doi.org/10.1016/j.advwatres.2011.02.010
Davy, Richard, Igor Esau, Alexander Chernokulsky, Stephen Outten, and Sergej %J International Journal of Climatology Zilitinkevich. 2017. ′Diurnal asymmetry to the observed global warming′, 37: 79-93. https://doi.org/10.1002/joc.4688
Degefu, Mekonnen Adnew, David P Rowell, and Woldeamlak Bewket. 2017. ′Teleconnections between Ethiopian rainfall variability and global SSTs: observations and methods for model evaluation′, J. Meteorol. Atmospheric Phys., 129: 173-86. https://doi.org/10.1007/s00703-016-0466-9
Deininger, Klaus, Daniel Ayalew Ali, Stein Holden, and Jaap Zevenbergen. 2008. ′Rural land certification in Ethiopia: Process, initial impact, and implications for other African countries′, J. World Dev., 36: 1786-812. https://doi.org/10.1016/j.worlddev.2007.09.012
Denis, Bertrand, René Laprise, Daniel Caya, and Jean Côté. 2002. ′Downscaling ability of one-way nested regional climate models: the Big-Brother Experiment′, J. Clim. Dyn., 18: 627-46. https://doi.org/10.1007/s00382-001-0201-0
Deressa, Temesgen Tadesse. 2010. ′Assessment of the vulnerability of Ethiopian agriculture to climate change and farmers’ adaptation strategies′, University of Pretoria. http://hdl.handle.net/2263/28969 (accessed, 25-02-2022).
Devereux, Stephen 2000. Food insecurity in Ethiopia: A discussion paper for DFID (Institute of Development Studies: Brighton, UK). https://www.researchgate.net/profile/Stephen-Devereux2/publication/50200941_Food_Insecurity_in_Ethiopia/links/556d653908aec2268305541d/Food-Insecurity-in-Ethiopia.pdf (accessed, 12-02-2021).
Devia, Gayathri K, B P Ganasri, and G S Dwarakish. 2015. ′A review on hydrological models′, J. Aquat. Procedia, 4: 1001-07. https://doi.org/10.1016/j.aqpro.2015.02.126
Di Luca, Alejandro, Ramón de Elía, and René Laprise. 2012. ′Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations′, J. Clim. Dyn., 38: 1229-47. https://doi.org/ 10.1007/s00382-011-1068-3
Dile, Yihun Taddele, Ronny Berndtsson, and Shimelis G Setegn. 2013. ′Hydrological response to climate change for Gilgel Abay river, in the lake tana basin-upper blue Nile basin of Ethiopia′, J.PLoS One, 8: 1-13. https://doi.org/10.1371/journal.pone.0079296
Dingman, S Lawrence. 2015. Physical hydrology (Waveland press: Long Grove, Illinois).
http://meteo.edu.vn/~trungnq/S.%20Lawrence%20DingmanPhysical%20Hydrology,%2 Third%20Edition-Waveland%20Press,%20Inc%20(2014).pdf (accessed, 02-03-2021).
Diro, GT, David Ian Francis Grimes, and Emily Black. 2011. ′Teleconnections between Ethiopian summer rainfall and sea surface temperature: part II. Seasonal forecasting′, J. Clim. Dyn., 37: 121-31. https://doi.org/ 10.1007/s00382-010-0896-x
Djan′na, H Koubodana, Moustapha Tall, Ernest Amoussou, Muhammad Mumtaz, Julien Adounkpe, and Kossi Atchonouglo. 2020. ′Trend Analysis of Hydroclimatic Historical Data and Future Scenarios of Climate Extreme Indices over Mono River Basin in West Africa′, Am. J. Rural. Dev., 8: 37-52. https://doi.org/ 10.20944/preprints201906.0267.v1
Djan’na, H, Moustapha Tall, Ernest Amoussou, Muhammad Mumtaz, Julien Adounkpe, and Kossi Atchonouglo. 2019. ′Trend Analysis of Hydroclimatic Historical Data and Future Scenarios of Climate Extreme Indices over Mono River Basin in West Africa′. https://doi.org/ 10.20944/preprints201906.0267.v1
Dogan, Selim, Ali Berktay, and Vijay P Singh. 2012. ′Comparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, Turkey′, J. Hydrol., 470: 255-68. https://doi.org/10.1016/j.jhydrol.2012.09.003
Douglas, EM, RM Vogel, and CN Kroll. 2000. ′Trends in floods and low flows in the United States: impact of spatial correlation′, J. Hydrol., 240: 90-105. https://doi.org/10.1016/S0022-1694(00)00336-X
Dralle, David N, Nathaniel J Karst, and Sally E Thompson. 2016. ′Dry season streamflow persistence in seasonal climates′, J. Water Resour. Res., 52: 90-107. https://doi.org/10.1002/2015WR017752
Dykes, Alan P, Mark Mulligan, and John Wainwright. 2015. Monitoring and modelling dynamic environments:(a Festschrift in Memory of Professor John B. Thornes) (John Wiley & Sons). https://swab.zlibcdn.com/dtoken/1014bf78ccaf2821d8f36996d608bf13 (accessed, 22-03-2022).
Ebinger, CJ, Tesfaye Yemane, Giday Woldegabriel, JL Aronson, and RC Walter. 1993. ′Late Eocene–Recent volcanism and faulting in the southern main Ethiopian rift′, J. Geol Soc, 150: 99-108. https://doi.org/10.1144/gsjgs.150.1.0099
Ebrahim, Girma Yimer, Andreja Jonoski, Ann Van Griensven, and Giuliano Di Baldassarre. 2013. ′Downscaling technique uncertainty in assessing hydrological impact of climate change in the Upper Beles River Basin, Ethiopia′, J. Hydrol. Research, 44: 377-98. https://doi.org/10.2166/nh.2012.037
Edossa, Desalegn Chemeda, Mukand Singh Babel, and Ashim Das Gupta. 2010. ′Drought analysis in the Awash river basin, Ethiopia′, J. Water Resour. Manag., 24: 1441-60. https://doi.org/10.1007/s11269-009-9508-0
Elzeiny, Radwa, Mossad Khadr, Shreen Zahran, and Ebrahim Rashwan. 2019. ′Homogeneity Analysis of Rainfall Series in the Upper Blue Nile River Basin, Ethiopia′, J. Eng. Res., 3: 46-53. https://doi.org/10.21608/erjeng.2019.125704
Emerta, A J Strauss Center for international security, and Law: CCAPS. 2013. "Climate Change, Growth and Poverty in Ethiopia. The Robert S." In. https://apps.dtic.mil/sti/pdfs/ADA613138.pdf (accessed, 5-11-2021).
Endalew, Gebru Jember. 2007. Changes in the frequency and intensity of extremes over Northeast Africa (KNMI).
Endris, Hussen Seid, Philip Omondi, Suman Jain, Christopher Lennard, Bruce Hewitson, Ladislaus Chang′a, JL Awange, Alessandro Dosio, Patrick Ketiem, and Grigory Nikulin. 2013. ′Assessment of the performance of CORDEX regional climate models in simulating East African rainfall′, J. Clim., 26: 8453-75. https://doi.org/10.1175/JCLI-D-12-00708.1
Enyew, BD, and GJ Steeneveld. 2014. ′Analysing the impact of topography on precipitation and flooding on the Ethiopian highlands′, J. Geol. Geosci., 3: 1-6. http://dx.doi.org/10.4172/2329-6755.1000173
Enyew, BD, HAJ Van Lanen, and AF Van Loon. 2014. ′Assessment of the impact of climate change on hydrological drought in Lake Tana catchment, Blue Nile basin, Ethiopia′, J. Geol. Geosci., 3: 1-17. http://dx.doi.org/10.4172/2329-6755.1000174
Esayas, Befikadu, Belay Simane, Ermias Teferi, Victor Ongoma, and Nigussie Tefera. 2019. ′Climate variability and farmers’ perception in Southern Ethiopia′, J. Adv. Meteorol., 2019: 1-19. https://doi.org/10.1155/2019/7341465
Eshetu, Girma, Tino Johansson, and Wayessa Garedew. 2016. ′Rainfall trend and variability analysis in Setema-Gatira area of Jimma, Southwestern Ethiopia′, Afr. J. Agric. Res., 11: 3037-45. https://doi.org/10.5897/AJAR2015.10160
Eshetu, Melat. 2020. ′Hydro-Climatic Variability and Trend Analysis of Modjo River Watershed, Awash River Basin of Ethiopia.′, J. Hydrol. Curr. Res., 11: 1-8. https://www.hilarispublisher.com/open-access/hydroclimatic-variability-and-trend-analysis-of-modjo-river-watershed-awash-river-basin-of-ethiopia.pdf (accessed, 05-05-2021).
Everitt, Brian, and Anders Skrondal. 2002. The Cambridge dictionary of statistics (Cambridge University Press Cambridge: USA, New York).
http://www.stewartschultz.com/statistics/books/Cambridge%20Dictionary%20Statistics%204th.pdf (accessed, 15-01-2021).
Fang, GH, J Yang, YN Chen, and C Zammit. 2015. ′Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China′, J. Hydrol. Earth. Syst. Sci., 19: 2547-59. https://doi.org/10.5194/hess-19-2547-2015
Fiaz Hussain, Ghulam Nabi, Muhammad Waseem Boota 2015. ′Rainfall trend analysis by using the Mann-Kendall test & Sen′s slope estimates: a case study of district Chakwal rain gauge, barani area, northern Punjab province, Pakistan′, Int. J. Agric. Eng., 27: 3159-65. http://www.cibtech.org/jgee.htm (accessed, 25-02-2021).
Ficklin, Darren L, Yuzhou Luo, Eike Luedeling, and Minghua Zhang. 2009. ′Climate change sensitivity assessment of a highly agricultural watershed using SWAT′, J. Hydrol., 374: 16-29. https://doi.org/10.1016/j.jhydrol.2009.05.016
Fischer, Thomas, Marco Gemmer, Lüliu Liu, and Buda Su. 2012. ′Change-points in climate extremes in the Zhujiang River Basin, South China, 1961–2007′, J. Clim. Change, 110: 783-99. DOI https://doi.org/10.1007/s10584-011-0123-8
Forest., Ministry of Environment and. 2015. "Ethiopia’s Second National Communication to the United Nations Framework Convention on Climate Change (UNFCCC)." In, 1-235. Addis Ababa, Ethiopia: Ministry of Environment and Forest (MEF). https://unfccc.int/resource/docs/natc/ethnc2.pdf (accessed, 30-02-2021)
Fowler, Hayley J, Stephen Blenkinsop, and Claudia Tebaldi. 2007. ′Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling′, Int. J. Climatol., 27: 1547-78. https://doi.org/10.1002/joc.1556
Friedlingstein, Pierre, Michael O′sullivan, Matthew W Jones, Robbie M Andrew, Judith Hauck, Are Olsen, Glen P Peters, Wouter Peters, Julia Pongratz, and Stephen Sitch. 2020. ′Global carbon budget 2020′, J. Earth Syst. Sci. Data, 12: 3269-340. https://doi.org/10.5194/essd-12-3269-2020
Gadissa, Takele, Maurice Nyadawa, Fiseha Behulu, and Benedict Mutua. 2018. ′The effect of climate change on loss of lake volume: Case of sedimentation in Central Rift Valley Basin, Ethiopia′, J. Hydrol., 5: 1-18. https://doi.org/10.3390/hydrology5040067
Gao, Feng, Yuhu Zhang, Xiulin Ren, Yunjun Yao, Zengchao Hao, and Wanyuan Cai. 2018. ′Evaluation of CHIRPS and its application for drought monitoring over the Haihe River Basin, China′, J. Natural Hazards, 92: 155-72. https://doi.org/10.1007/s11069-018-3196-0
Gassman, Philip W, Manuel R Reyes, Colleen H Green, and Jeffrey G Arnold. 2007. ′The soil and water assessment tool: historical development, applications, and future research directions′, J.Trans. ASABE, Appl. Eng., 50: 1211-50. https://doi.org/10.13031/2013.23637
Gebeyehu, Elias 2017. ′Impact of climate change on Lake Chamo water balance, Ethiopia′, Int. J. Water Res., 9: 86-95. https://doi.org/10.5897/IJWREE2015.0598
Gebre, SL, K Tadele, and BG Mariam. 2015. ′Potential impacts of climate change on the hydrology and water resources availability of Didessa Catchment, Blue Nile River Basin, Ethiopia′, J. Geol. Geosci, 4: 1-7. https://doi.org/10.1016/j.scitotenv.2020.140504
Gebrechorkos, Solomon H, Stephan Hülsmann, and Christian Bernhofer. 2019. ′Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa′, J. Sci. Rep., 9: 1-9. https://doi.org/10.1038/s41598-019-47933-8
Gebremeskel, Gebremedhin, and Asfaw Kebede. 2018. ′Estimating the effect of climate change on water resources: Integrated use of climate and hydrological models in the Werii watershed of the Tekeze river basin, Northern Ethiopia′, J. Agric. Nat. Resour., 52: 195-207. https://doi.org/10.1016/j.anres.2018.06.010
Gebretekle, Haftu, Amare Gebremedhin Nigusse, and Biadgilgn Demissie. 2021. ′Stream flow dynamics under current and future land cover conditions in Atsela Watershed, Northern Ethiopia′, J cta Geophys., 70: 305–18. https://doi.org/10.1007/s11600-021-00691-6
Gebrie, GS, and AN Engida. 2015. "Climate Modeling of the Impact of Climate Change on Sugarcane and Cotton for Project on′a Climate Resilient Production of Cotton and Sugar in Ethiopia′." In. Addis Ababa, Ethiopia: Ethiopia Development Research Institute. https://www.coursehero.com/file/127296572/Research-Report-021pdf/ (accessed 25-02-2022).
Gedefaw, Mohammed, Hao Wang, Denghua Yan, Xinshan Song, Dengming Yan, Guaqiang Dong, Jianwei Wang, Abel Girma, Babar Aijaz Ali, and Dorjsuren Batsuren. 2018. ′Trend analysis of climatic and hydrological variables in the Awash River Basin, Ethiopia′, Water, 10: 1-14. https://doi.org/10.3390/w10111554
Getahun, Yitea Seneshaw, Ming-Hsu Li, and Pei-Yuan Chen. 2020. ′Assessing Impact of Climate Change on Hydrology of Melka Kuntrie Subbasin, Ethiopia with Ar4 and Ar5 Projections′, Water, 12: 1-23. https://doi.org/10.3390/w12051308
Giorgi, Filippo, Colin Jones, and Ghassem R Asrar. 2009. ′Addressing climate information needs at the regional level: the CORDEX framework′, J. WMO. Bulletin, 58: 175-83. http://wcrp.ipsl.jussieu.fr/cordex/documents/CORDEX_giorgi_WMO.pdf (accessed 05-11-2021)
Giri, Subhasis, Ashok Mishra, Zhen Zhang, Richard G Lathrop, and Ali O Alnahit. 2021. ′Meteorological and Hydrological Drought Analysis and Its Impact on Water Quality and Stream Integrity′, J. Sustainability, 13: 1-24. https://doi.org/10.3390/su13158175
Girma, Michael M Awulachew, and B Seleshi. 2007. Irrigation practices in Ethiopia: Characteristics of selected irrigation schemes (IWMI: Addis Ababa, Ethiopia). https://dlc.dlib.indiana.edu/dlc/bitstream/handle/10535/4737/WOR124.pdf?sequence=1&isAllowed=y (accessed 13-02-2021).
Girmay, Gebrehana, Awdenegest Moges, and Alemayehu Muluneh. 2021. ′Assessment of current and future climate change impact on soil loss rate of Agewmariam Watershed, Northern Ethiopia′, J. Air, Soil Water Res., 14: 1-11. https://doi.org/10.1177/1178622121995847
Girvetz, Evan H, Edwin P Maurer, Philip B Duffy, Aaron Ruesch, Bridget Thrasher, and Chris Zganjar. 2013. "Making climate data relevant to decision making: the important details of spatial and temporal downscaling." In, 1-43. Santa Clara University: The World Bank. https://scholarcommons.scu.edu/cgi/viewcontent.cgi?article=1012&context=ceng (accessed 25-02-2022).
Gissila, T, E Black, DIF Grimes, and JM Slingo. 2004. ′Seasonal forecasting of the Ethiopian summer rains′, Int. J. Climatol., 24: 1345-58. https://doi.org/10.1002/joc.1078
Golmohammadi, Golmar, Shiv Prasher, Ali Madani, and Ramesh Rudra. 2014. ′Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT′, Hydrology, 1: 20-39. https://doi.org/10.3390/hydrology1010020
Goosse, Hugues, Pierre-Yves BARRIAT, Marie-France LOUTRE, and Violette ZUNZ. 2010. Introduction to climate dynamics and climate modeling (Centre de recherche sur la Terre et le climat Georges Lemaître-UCLouvain). http://hdl.handle.net/20.500.12279/286 (accessed 25-02-2022).
Gorfu, Dereje, and Eshetu Ahmed. 2012. ′Crops and agro-ecological zones of Ethiopia′, J. Ethiopian Institute of Agricultural Research.
Gosain, A.K., A. Mani and C. Dwivedi. 2009. "Hydrological Modelling-Literature Review. Climawater, Report NO.1."
Griggs, David J, and Maria Noguer. 2002. ′Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change′, J.Weather, 57: 267-69. https://www.researchgate.net/publication/216811760_Climate_Change_2001_The_Scientific_Basis (accessed 25-09-2021)
Grove, Alan T, F Alayne Street, and AS Goudie. 1975. ′Former lake levels and climatic change in the Rift Valley of southern Ethiopia′, J. Geogr., 141: 177-94. https://doi.org/10.2307/1797205
Guo, Jing, Xiaoling Su, Vijay P Singh, and Jiming Jin. 2016. ′Impacts of climate and land use/cover change on streamflow using SWAT and a separation method for the Xiying River Basin in northwestern China′, Water, 8: 1-14. https://doi.org/10.3390/w8050192
Haan, Charles Thomas, Howard P Johnson, and Donald L Brakensiek. 1982. "Hydrologic modeling of small watersheds." In.: the University of Michigan. https://books.google.com.tw/books/about/Hydrologic_Modeling_of_Small_Watersheds.html?id=AfhOAAAAMAAJ&redir_esc=y (accessed, 28-02-2022).
Haile, Gebremedhin Gebremeskel, Qiuhong Tang, Seyed‐Mohammad Hosseini‐Moghari, Xingcai Liu, TG Gebremicael, Guoyong Leng, Asfaw Kebede, Ximeng Xu, and Xiaobo Yun. 2020. ′Projected impacts of climate change on drought patterns over East Africa′, J.Earths Future, 8: 1-23. https://doi.org/10.1029/2020EF001502
Hailemariam, Kinfe 1999. ′Impact of climate change on the water resources of Awash River Basin, Ethiopia′, J. Clim. Res., 12: 91-96. https://doi.org/10.3354/cr012091
Hargreaves, George H, and Zohrab A Samani. 1985. ′Reference crop evapotranspiration from temperature′, J. Appl Eng Agric., 1: 96-99. https://doi.org/ 10.13031/2013.26773
Hashmi, MZ, AY Shamseldin, and BW Melville. 2009. ′Statistical downscaling of precipitation: state-of-the-art and application of bayesian multi-model approach for uncertainty assessment′, J. Hydrol. Earth Syst. Sci. Discuss., 6: 6535-79. https://doi.org/10.5194/hessd-6-6535-2009
Hawkins, Richard H, Allen T Hjelmfelt Jr, and Adrian W Zevenbergen. 1985. ′Runoff probability, storm depth, and curve numbers′, J. Irrig. Drain. Eng., 111: 330-40. https://doi.org/10.1061
Hennemuth, Tamás Illy, Daniela Jacob, Elke Keup-Thiel, Sven Kotlarski, Grigory Nikulin, Juliane Otto, and G Szépszó. 2017. "Guidance for EURO-CORDEX climate projections data use." In, 1-27. https://www.hereon.de/imperia/md/content/csc/cordex/euro-cordex-guidelines-version1.0-2017.08.pdf (accessed 05-11-2021).
Hessebo, Misrak Tamire, Teshale Woldeamanuel, and Menfese Tadesse. 2019. ′Spatial and temporal climate variability and change in the Bilate catchment, central Rift Valley lakes region, Ethiopia′, J. Phys. Geogr., 42: 1-27. https://doi.org/10.1080/02723646.2019.1698094
Ho Ming, K, and F Yusof. 2012. ′Homogeneity Tests on Daily Rainfall Series in Peninsular Malaysia.′, Int. J. Contemp. Math. Sci, 7: 9-22. https://www.researchgate.net/publication/267676130_Homogeneity_tests_on_daily_rainfall_series_in_peninsular_Malaysia (accessed, 15-03-2021).
Hoerling, Martin P, Jon K Eischeid, Xiao-Wei Quan, Henry F Diaz, Robert S Webb, Randall M Dole, and David R Easterling. 2012. ′Is a transition to semipermanent drought conditions imminent in the US Great Plains?′, J. Clim., 25: 8380-86. https://doi.org/10.1175/JCLI-D-12-00449.1
Homdee, Tipaporn, Kobkiat Pongput, and Shinjiro Kanae. 2016. ′A comparative performance analysis of three standardized climatic drought indices in the Chi River basin, Thailand′, J. Agr. Nat. Resour., 50: 1-29. https://doi.org/10.1016/j.anres.2016.02.002
Horton, B1 1995. ′Geographical distribution of changes in maximum and minimum temperatures′, J. Atmos Res., 37: 101-17. https://doi.org/10.1016/0169-8095(94)00083-P
Hu, Maochuan, Takahiro Sayama, Sophal Try, Kaoru Takara, and Kenji Tanaka. 2019. ′Trend analysis of hydroclimatic variables in the Kamo River Basin, Japan′, J. Water, 11: 1-11. https://doi.org/10.3390/w11091782
Hussen, Behailu, Ayalkebet Mekonnen, and Santosh Murlidhar Pingale. 2018. ′Integrated water resources management under climate change scenarios in the sub-basin of Abaya-Chamo, Ethiopia′, J. Model. Earth Syst. Environ., 4: 221-40. https://doi.org/10.1007/s40808-018-0438-9
Huth, R. 2004. ′Parametric versus non-parametric estimates of climatic trends′, J. Theor. Appl. Climatol., 77: 107-12. https://doi.org/10.1007/s00704-003-0026-3
Imran, Rana Muhammad, Abdul Rehman, Muhammad Muzamil Khan, MR Jamil, U Abbas, Rana Saad Mahmood, Syed Amir Mahmood, and Rana M Ehsan. 2019. ′Delineation of drainage network and estimation of total discharge using Digital Elevation Model (DEM)′, Int. j. innov. sci., 1: 50-61. https://doi.org/10.33411/IJIST/2019010201
IPCC. 2000. "A special report of working group III of the intergovernmental panel on climate change emissions scenarios." In, 1-27. Cambridge, UK: Cambridge Univ. https://www.ipcc.ch/site/assets/uploads/2018/03/sres-en.pdf
IPCC. 2007. "Climate change 2007: The physical science basis." In Climate change 2007: The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 1-19. New York, NY: Cambridge University Press. https://www.slvwd.com/sites/g/files/vyhlif1176/f/uploads/item_10b_4.pdf
IPCC. 2011. "The Concept of Risk in the IPCC Sixth Assessment Report: A Summary of Cross-Working Group Discussions. Intergovernmental Panel on Climate Change." In, edited by Andy Reisinger, Mark Howden, Carolina Vera, Mathias Garschagen, Margot Hurlbert, Sylvia Kreibiehl, Katharine J. Mach, Katja Mintenbeck and Brian O’Neill, 2-15. Geneva, Switzerland. https://www.ipcc.ch/site/assets/uploads/2021/01/The-concept-of-risk-in-the-IPCC-Sixth-Assessment-Report.pdf
IPCC. 2014. "Mitigation of climate change.Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)." In, 1-1435. Cambridge,UK and New York, NY, USA: Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_full.pdf
Jain, Vinit K, Rajendra P Pandey, Manoj K Jain, and Hi-Ryong Byun. 2015. ′Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin′, J.Weather. Clim., 8: 1-11. https://doi.org/10.1016/j.wace.2015.05.002
Jaiswal, RK, AK Lohani, and HL Tiwari. 2015. ′Statistical analysis for change detection and trend assessment in climatological parameters′, J. Environ. Process, 2: 729-49. https://doi.org/10.1007/s40710-015-0105-3
Jajarmizadeh, Milad, Sobri Harun, and Mohsen Salarpour. 2012. ′A review on theoretical consideration and types of models in hydrology′, J. Environ. Sci. Technol., 5: 249-61. https://doi.org/ 10.3923/jest.2012.249.261
Jarsso, Shiferaw. 2003. "IWater SECTOR DEVELOPMENT PROGRAM." In, 9-150. Addis Ababa, Ethiopia: Ministry of Water Resources. http://www.interaide.org/pratiques/sites/default/files/1.0_water_sector_development_programme_2002-20016.pdf (accessed, 05-04-2022).
Jaweso, Dessalegn, Brook Abate, Andreas Bauwe, and Bernd Lennartz. 2019. ′Hydro-meteorological trends in the upper Omo-Ghibe river basin, Ethiopia′, Water, 11: 1-18. https://doi.org/10.3390/w11091951
Juraj, M. Cunderlik. 2003. "Hydrological model selection for CFCAS project, Assessment of water resource risk and vulnerability to change in climate conditions." In, 1-41. University of Western Ontario. https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=1008&context=wrrr (accessed, 27-02-2022).
Kang, Ho Ming, and Fadhilah Yusof. 2012. ′Homogeneity tests on daily rainfall series′, Int. J. Contemp. Math. Sci., 7: 9-22. http://www.m-hikari.com/ijcms/ijcms-2012/1-4-2012/kangIJCMS1-4-2012.pdf (accessed, 15-03-2021).
Karamouz, Mohammad, Kabir Rasouli, and Sara Nazif. 2009. ′Development of a hybrid index for drought prediction: case study′, J. Hydrol. Eng., 14: 617-27. https://doi.org/10.1061
Karl, Thomas R, Philip D Jones, Richard W Knight, George Kukla, Neil Plummer, Vyacheslav Razuvayev, Kevin P Gallo, Janette Lindseay, Robert J Charlson, and Thomas C Peterson. 1993. ′Asymmetric trends of daily maximum and minimum temperature′, J. Nat.Resour., 74: 1007-23. https://digitalcommons.unl.edu/natrespapers/185/
Kaviya, B 2013. ′Runoff estimation using swat model in brahmani-baitarani river basin′, Int. J. Biot. Trends Technol., 3: 1-16. https://www.ijbttjournal.org/
Keirle, Robert, and Colin Hayes. 2007. ′A Review of climate change and its potential Impacts on water resources in the UK′, J. E.WATER Asso.: 1-18. https://www.ewa-online.eu/tl_files/_media/content/documents_pdf/Publications/E-WAter/documents/24_2007_04.pdf (accessed 25-02-2022).
Kendall, M 1975. Rank correlation methods (Charles Griffin: London). https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1113726 (accessed, 09-04-2021).
Khadr, Mosaad 2016. ′Temporal and spatial analysis of meteorological drought characteristics in the upper Blue Nile river region′, J. Hydrol. Res., 48: 265-76. https://doi.org/10.2166/nh.2016.194
Khatiwada, Kabi Raj, Jeeban Panthi, Madan Lall Shrestha, and Santosh Nepal. 2016. ′Hydro-climatic variability in the Karnali River basin of Nepal Himalaya′, J. Clim., 4: 1-14. https://doi.org/10.3390/cli4020017
Khoi, Dao Nguyen, and Tadashi Suetsugi. 2014. ′The responses of hydrological processes and sediment yield to land‐use and climate change in the Be River Catchment, Vietnam′, J. Hydrol. Process., 28: 640-52. https://doi.org/10.1002/hyp.9620
Kidane, Moges, Terefe Tolessa, Alemu Bezie, Nega Kessete, and Mahammed Endrias. 2019. ′Evaluating the impacts of climate and land use/land cover (LU/LC) dynamics on the Hydrological Responses of the Upper Blue Nile in the Central Highlands of Ethiopia′, J. Spat. Inf. Res., 27: 151-67. https://doi.org/10.1007/s41324-018-0222-y
Kirono, Dewi GC, Vanessa Round, Craig Heady, Francis HS Chiew, and Stacey Osbrough. 2020. ′Drought projections for Australia: updated results and analysis of model simulations′, J.Weather. Clim. Extremes, 30: 1-18. https://doi.org/10.1016/j.wace.2020.100280
Kļaviņš, Māris, Valery Rodinov, Andrei Timukhin, and Ilga Kokorīte. 2008. ′Patterns of river discharge: long-term changes in Latvia and the Baltic region′, J. Baltica, 21: 41-49. https://www.researchgate.net/publication/266609738_Patterns_of_river_discharge_Long-term_changes_in_Latvia_and_the_Baltic_region (accessed, 19-04-2021).
Koch, Manfred, and Netsanet Cherie. 2013. "SWAT modeling of the impact of future climate change on the hydrology and the water resources in the upper Blue Nile River basin, Ethiopia." In Proceedings of the 6th International Conference on Water Resources and Environment Research, ICWRER, 488-523. https://doi.org/10.5675/ICWRER_2013
Korecha, Diriba, and Anthony G Barnston. 2007. ′Predictability of June–September rainfall in Ethiopia′, J. Mon. Weather Rev., 135: 628-50. https://doi.org/10.1175/MWR3304.1
Kraus, EB 1977. ′Subtropical droughts and cross-equatorial energy transports′, J. Mon. Weather Rev., 105: 1009-18. https://doi.org/10.1175/1520-0493(1977)105<1009:SDACEE>2.0.CO;2
Krause, Peter, DP Boyle, and Frank Bäse. 2005. ′Comparison of different efficiency criteria for hydrological model assessment′, Advances in geosciences, 5: 89-97. https://doi.org/10.5194/adgeo-5-89-2005 (accessed, 16-12-2021).
Kueh, MT, CY Lin, YJ Chuang, YF Sheng, and YY Chien. 2017. ′Climate variability of heat waves and their associated diurnal temperature range variations in Taiwan′, J.Environ. Res. Lett., 12: 1-9. https://doi.org/10.1088/1748-9326/aa70d9
Kundzewicz, ZBIGNIEW W, and Maciej Radziejewski. 2006. "Methodologies for trend detection." In Climate Variability and Change-Hydrological Impacts, 538-49. Havana, Cuba: IAHS. https://iahs.info/uploads/dms/13717.97-538-550-07-308-Kundzewicz-Radziejewski.pdf (accessed, 11-04-2021).
Lal, Mohan, SK Mishra, Ashish Pandey, RP Pandey, PK Meena, Anubhav Chaudhary, Ranjit Kumar Jha, Ajit Kumar Shreevastava, and Yogendra Kumar. 2017. ′Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots′, J. Hydrogeol., 25: 151-67. https://doi.org/10.1007/s10040-016-1460-5
Lambe, Biruk Tagesse, and Subrahmanya Kundapura. 2021. ′Analysis of meteorological variability and tendency over Bilate basin of Rift Valley Lakes basins in Ethiopia′, Arab. J. Geosci., 14: 1-22. https://doi.org/10.1007/s12517-021-08962-8
Lenderink, Geert, Adri Buishand, and W van Deursen. 2007. ′Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach′, Hydrology and Earth System Sciences, 11: 1145-59. https://doi.org/10.5194/hess-11-1145-2007
Leta, Olkeba, Aly El-Kadi, and Henrietta Dulai. 2018. ′Impact of climate change on daily streamflow and its extreme values in pacific island watersheds′, Sustainability, 10: 2057. https://doi.org/10.3390/su10062057
Li, Xue, Jian Sha, Yue Zhao, and Zhong-Liang Wang. 2019. ′Estimating the responses of hydrological and sedimental processes to future climate change in watersheds with different landscapes in the Yellow River Basin, China′, Int. J. Environ. Res. Public Health, 16: 4054. https://doi.org/10.3390/ijerph16204054
Lin, W‐T, W‐C Chou, C‐Y Lin, P‐H Huang, and J‐S Tsai. 2008. ′Win Basin: using improved algorithms and the GIS technique for automated watershed modelling analysis from digital elevation models′, Int. J. Geogr. Inf. Syst., 22: 47-69. https://doi.org/10.1080/13658810701300121
Liou, Yuei-An, and Getachew Mehabie Mulualem. 2019. ′Spatio–temporal assessment of drought in Ethiopia and the impact of recent intense droughts′, J. Remote Sens., 11: 1828. https://doi.org/10.3390/rs11151828
Lorencová, Eliška, Jana Frélichová, Edward Nelson, and David Vačkář. 2013. ′Past and future impacts of land use and climate change on agricultural ecosystem services in the Czech Republic′, J. Land use policy, 33: 183-94. https://doi.org/10.1016/j.landusepol.2012.12.012
Lu, George Y, and David W Wong. 2008. ′An adaptive inverse-distance weighting spatial interpolation technique′, J. Comput. Geosci., 34: 1044-55. https://doi.org/10.1016/j.cageo.2007.07.010
Lu, Yejia, Huanjie Cai, Tingting Jiang, Shikun Sun, Yubao Wang, Jinfeng Zhao, Xiang Yu, and Jingxin Sun. 2019. ′Assessment of global drought propensity and its impacts on agricultural water use in future climate scenarios′, J. Agric. For. Meteorol., 278: 107623. https://doi.org/10.1016/j.agrformet.2019.107623
Maity, Rajib, D Nagesh Kumar, and Ravi S Nanjundiah. 2007. ′Review of hydroclimatic teleconnection between hydrologic variables and large-scale atmospheric circulation patterns with Indian perspective′, ISH J. Hydraul. Eng., 13: 77-92. https://doi.org/10.1080/09715010.2007.10514859
Mandeville, AN, PE O′connell, JV Sutcliffe, and JE Nash. 1970. ′River flow forecasting through conceptual models part III-The Ray catchment at Grendon Underwood′, J. Hydrol., 11: 109-28. https://doi.org/10.1016/0022-1694(70)90098-3
Mann, Henry B 1945. ′Nonparametric tests against trend′, J. Econometric Soc., 13: 245-59. https://doi.org/10.2307/1907187
Matewos, Tafesse, and Tewodros Tefera. 2020. ′Local level rainfall and temperature variability in drought-prone districts of rural Sidama, central rift valley region of Ethiopia′, J.Phys. Geogr., 41: 36-53. https://doi.org/10.1080/02723646.2019.1625850
Mathewos, M, M Dananto, T Erkossa, and G Mulugeta. 2019. ′Land use land cover dynamics at Bilate Alaba sub-watershed, southern Ethiopia′, J. Environ. Agric. Sci., 23: 1521-28. https://doi.org/10.4314/jasem.v23i8.16
McKee, Thomas B, Nolan J Doesken, and John Kleist. 1993. "The relationship of drought frequency and duration to time scales." In Proceedings of the 8th Conference on Applied Climatology, 179-83. Boston. https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf (accessed, 19-11-2021).
McSweeney, C, M New, and G Lizcano. 2008. "UNDP climate change country profiles: Ethiopia." In Profiles for 52 countries, 1-27. https://digital.library.unt.edu/ark:/67531/metadc226682/m2/1/high_res_d/Ethiopia.hires.report.pdf (accessed, 11-03-2021).
Medina, Yelena, and Enrique Muñoz. 2020. ′Estimation of Annual Maximum and Minimum Flow Trends in a Data-Scarce Basin. Case Study of the Allipén River Watershed, Chile′, Water, 12: 1-15. https://doi.org/10.3390/w12010162
Mekonen, Abebe Arega, Arega Bazezew Berlie, and Mehrete Belay J Geoenvironmental Disasters Ferede. 2020. ′Spatial and temporal drought incidence analysis in the northeastern highlands of Ethiopia′, J. Geoenvironmental Disasters, 7: 1-17. https://doi.org/10.1186/s40677-020-0146-4
Mekonnen, Ermias. 2019. ′Surface Water and Groundwater Resources of Rift Valley Lakes Basin of Ethiopia: A Review of Potentials, Challenges and Future Development Perspectives′, IJRTE, 8: 4-10. https://www.ijrdet.com/files/Volume8Issue6/IJRDET_0619_02.pdf (accessed, 06-04-2022).
Melke, Andargachew, and Fantahun Abegaz. 2017. ′Impact of climate change on hydrological responses of Gumara catchment, in the Lake Tana Basin-Upper Blue Nile Basin of Ethiopia′, IJWREE, 9: 8-21. https://doi.org/10.5897/IJWREE2016.0658
Mengistu, Daniel, Woldeamlak Bewket, Alessandro Dosio, and Hans-Juergen Panitz. 2021. ′Climate change impacts on water resources in the Upper Blue Nile (Abay) River Basin, Ethiopia′, J. Hydrol., 592: 1-44. https://doi.org/10.1016/j.jhydrol.2020.125614
Menna, BY. 2017. ′Simulation of Hydro Climatological Impacts Caused by Climate Change: The Case of Hare Watershed, Southern Rift Valley of Ethiopia′, J. Hydrol. Curr. Res., 8: 1-12. https://doi.org/10.4172/2157-7587.1000276
Mera, Getachew Alem 2018. ′Drought and its impacts in Ethiopia′, J. Weather. Clim. Extremes, 22: 24-35. https://doi.org/10.1016/j.wace.2018.10.002
Mimura, Nobuo, Roger S Pulwarty, Ibrahim Elshinnawy, Margaret Hiza Redsteer, He Qing Huang, Johnson Ndi Nkem, Roberto A Sanchez Rodriguez, Richard Moss, Walter Vergara, and Lisa S Darby. 2015. ′Adaptation planning and implementation.′ in, Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects (Cambridge University Press). https://doi.org/10.1017/CBO9781107415379.020
Moges, S, Y Alemu, and S Mcfeeters. 2010. ′Flooding in Ethiopia: Recent history and 2006 flood: Implications for the Nile Basin ′ in Worku Legesse Helmut Kloos (ed.), Water Resources Management in Ethiopia: Implications for the Nile Basin (Cambria Press: Amherst, New York). https://www.cambriapress.com/pub.cfm?bid=357 (accessed, 01-03-2021).
Moges, Semu A, Meron Teferi Taye, Patrick Willems, and M Gebremichael. 2014. ′Exceptional pattern of extreme rainfall variability at urban centre of Addis Ababa, Ethiopia′, J.Urban Water, 11: 596-604. https://doi.org/10.1080/1573062X.2013.831914
Mohammed, Yimer, Fantaw Yimer, Menfese Tadesse, and Kindie Tesfaye. 2018. ′Meteorological drought assessment in north east highlands of Ethiopia′, Int. J. Clim. Chang. Strateg. Manag., 10: 142-60. https://dx.doi.org/10.1108/IJCCSM-12-2016-0179
Mohseni Saravi, M, AA Safdari, and A Malekian. 2009. ′Intensity-Duration-Frequency and spatial analysis of droughts using the Standardized Precipitation Index′, J. Hydrol. Earth Syst. Sci. Discuss., 6: 1347-83. https://doi.org/10.5194/hessd-6-1347-2009
Molla, Dagnachew Daniel, Tenalem Ayenew Tegaye, and Christopher G Fletcher. 2019. ′Simulated surface and shallow groundwater resources in the Abaya-Chamo Lake basin, Ethiopia using a spatially-distributed water balance model′, J. Hydrol. Reg. Stud., 24: 1-17. https://doi.org/10.1016/j.ejrh.2019.100615
Molla, Firew, Abebe Kebede, U Jaya Prakash Raju, and Reports. 2018. ′The Impact of the El-Niño Southern Oscillation Precipitation and the Surface Temperature over the Upper Blue Nile Region′, J. Sci. Res., 21: 1-15. https://doi.org/10.9734/JSRR/2018/45657
Moloro, Tamrat Lolaso. 2018. ′Spatio-Temporal Analysis of Rainfall Variability and Meteorological Drought: A Case Study in Bilate River Basin, Southern Rift Valley, Ethiopia′, Int. J. Environ. Sci. Nat. Res., 14: 76-89. https://doi.org/10.19080/IJESNR.2018.14.555891
Monerie, Paul-Arthur, Emilia Sanchez-Gomez, and Julien Boé. 2017. ′On the range of future Sahel precipitation projections and the selection of a sub-sample of CMIP5 models for impact studies′, J. Clim. Dyn., 48: 2751-70. https://doi.org/10.1007/s00382-016-3236-y
Monteith, John L. 1965. "Evaporation and environment." In Symposia of the society for experimental biology, 205-34. Cambridge University Press (CUP) Cambridge. https://repository.rothamsted.ac.uk/item/8v5v7/evaporation-and-environment (accessed,15-09-2021).
Moriasi, Daniel N, Jeffrey G Arnold, Michael W Van Liew, Ronald L Bingner, R Daren Harmel, and Tamie L Veith. 2007. ′Model evaluation guidelines for systematic quantification of accuracy in watershed simulations′, Transactions of the ASABE, 50: 885-900. https://doi.org/10.13031/2013.23153
Moss, Richard H, Jae A Edmonds, Kathy A Hibbard, Martin R Manning, Steven K Rose, Detlef P Van Vuuren, Timothy R Carter, Seita Emori, Mikiko Kainuma, and Tom Kram. 2010. ′The next generation of scenarios for climate change research and assessment′, J. Nature, 463: 747-56. https://doi.org/10.1038/nature08823
Mulu, Gerawork F, Mamaru A Moges, and Bayu G Bihonegn. 2019. "Evaluating the Impacts of Climate Change on the Stream Flow Events in Range of Scale of Watersheds, in the Upper Blue Nile Basin." In International Conference on Advances of Science and Technology, 169-92. Bahir Dar, Ethiopia: Springer. https://doi.org/10.1007/978-3-030-43690-2_12
Murumkar, Asmita, Michael Durand, Alfonso Fernández, Mark Moritz, Bryan Mark, Sui Chang Phang, Sarah Laborde, Paul Scholte, Apoorva Shastry, and Ian J Journal of Arid Environments Hamilton. 2020. ′Trends and spatial patterns of 20th century temperature, rainfall and PET in the semi-arid Logone River basin, Sub-Saharan Africa′, 178: 104168. https://doi.org/10.1016/j.jaridenv.2020.104168
Musie, Mulugeta, Sumit Sen, and Puneet Srivastava. 2020. ′Application of CORDEX-AFRICA and NEX-GDDP datasets for hydrologic projections under climate change in Lake Ziway sub-basin, Ethiopia′, J. Hydrol. Reg. Stud., 31: 1-20. https://doi.org/10.1016/j.ejrh.2020.100721
Musonda, Bathsheba, Yuanshu Jing, Vedaste Iyakaremye, and Moses Ojara. 2020. ′Analysis of long-term variations of drought characteristics using standardized precipitation index over Zambia′, J.Atmosphere, 11: 1-20. https://doi.org/10.3390/atmos11121268
Nalbantis, I, and G Tsakiris. 2009. ′Assessment of hydrological drought revisited′, Water Resources Management, 23: 881-97. https://doi.org/10.1007/s11269-008-9305-1
Nam, Won-Ho, Michael J Hayes, Mark D Svoboda, Tsegaye Tadesse, and Donald A Wilhite. 2015. ′Drought hazard assessment in the context of climate change for South Korea′, J. Agric. Water Manag., 160: 106-17. https://doi.org/10.1016/j.agwat.2015.06.029
Ndikumana, J. 2000. "Coping Mechanisms and Their Efficacy in Disaster-prone Pastoral Systems of the Greater Horn of Africa: Effects of the 1995-97 Drought and the 1997-98 El Niño Rains and the Responses of Pastoralists and Livestock." In, 1-111. Texas, USA: International Livestock Research Institute. https://core.ac.uk/download/pdf/132661143.pdf (accessed,15-04-2021).
Neitsch, S, J Arnold, J Kiniry, and J Williams. 2005. ′Soil and Water Assessment Tool (SWAT) Theoretical Documentation, version 2005,. Temple, TX: Grassland Soil and Water Research Laboratory′, J. Agric. Res.: 1-494. https://swat.tamu.edu/media/1292/swat2005theory.pdf (accessed, 20-06-2021).
Neitsch, Susan L, Jeffrey G Arnold, Jim R Kiniry, and Jimmy R Williams. 2011. "Soil and water assessment tool theoretical documentation version 2009." In, 1-647. Texas Water Resources Institute. https://swat.tamu.edu/media/99192/swat2009-theory.pdf (accessed, 26-06-2021).
Nyadzi, Emmanuel, Andy B Nyamekye, Saskia E Werners, Robbert G Biesbroek, Art Dewulf, Erik Van Slobbe, Hoang P Long, Catrien JAM Termeer, and Fulco Ludwig. 2018. ′Diagnosing the potential of hydro-climatic information services to support rice farming in northern Ghana′, Wagen. J. Life Sc., 86-87: 51-63. https://doi.org/10.1016/j.njas.2018.07.002
Nyssen, Jan, Helga Vandenreyken, Jean Poesen, Jan Moeyersons, Jozef Deckers, Mitiku Haile, Christian Salles, and Gerard Govers. 2005. ′Rainfall erosivity and variability in the Northern Ethiopian Highlands′, J. Hydrol., 311: 172-87. https://doi.org/10.1016/j.jhydrol.2004.12.016
Orke, Yoseph Arba, and Ming-Hsu Li. 2021. ′Hydroclimatic Variability in the Bilate Watershed, Ethiopia′, J. Climate, 9: 1-22. https://doi.org/10.3390/cli9060098
Osborne, CP, I Chuine, D Viner, and FI Woodward. 2000. ′Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean′, J. Plant Cell Environ., 23: 701-10. https://doi.org/10.1046/j.1365-3040.2000.00584.x
Owen, DB. 1962. "Handbook of Statistical Tables, Addision." In, 1-580. Wesley Publishing Company, Reading, MA. 10.1016/0016-0032(62)90958-4
Pal, Jeremy S, Filippo Giorgi, Xunqiang Bi, Nellie Elguindi, Fabien Solmon, Xuejie Gao, Sara A Rauscher, Raquel Francisco, Ashraf Zakey, and Jonathan Winter. 2007. ′Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET′, J. Bull. Am. Meteorol. Soc., 88: 1395-410. https://doi.org/10.1175/BAMS-88-9-1395
Pascual-Ferrer, Jordi, Agustí Pérez-Foguet, Jordi Codony, Ester Raventós, and Lucila Candela. 2014. ′Assessment of water resources management in the Ethiopian Central Rift Valley: environmental conservation and poverty reduction′, Int. J. Water Resour. Dev., 30: 572-87. https://doi.org/10.1080/07900627.2013.843410
Pettitt, A. N. 1979. ′A non-parametric approach to the change-point problem′, J. R. Stat. Soc., 28: 126-35. https://doi.org/10.2307/2346729
Pike, JG 1964. ′The estimation of annual runoff from meteorological data in a tropical climate′, J. Hydrol., 2: 116-23. https://doi.org/10.1016/0022-1694(64)90022-8
Pingale, Santosh Murlidhar, Ayalkibet Mekonnen, and Samuel Dagalo Hatiye. 2019. "Trends and abrupt changes in hydro-climatic variables in a Kulfo catchment, Ethiopia." In 18 th International Conference on Sustainable Water Resources Development 1-17. Arba Minch, Ethiopia: Arba Minch University. https://www.researchgate.net/publication/325180434_Trends_and_abrupt_changes_in_hydro-climatic_variables_in_a_Kulfo_catchment_Ethiopia (accessed, 20-04-2021).
Praveen, Bushra, Swapan Talukdar, Susanta Mahato, Jayanta Mondal, Pritee Sharma, Abu Reza Md Towfiqul Islam, and Atiqur Rahman. 2020. ′Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches′, J. Sci. Rep., 10: 1-21. https://doi.org/10.1038/s41598-020-67228-7
Priestley, Charles Henry Brian, and Robert Joseph Taylor. 1972. ′On the assessment of surface heat flux and evaporation using large-scale parameters′, J. Mon. Weather Rev., 100: 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
Qi, Zuoda, Gelin Kang, Chunli Chu, Yu Qiu, Ze Xu, and Yuqiu Wang. 2017. ′Comparison of SWAT and GWLF model simulation performance in humid south and semi-arid north of China′, Water, 9: 567. https://doi.org/10.3390/w9080567
Qingyun Duan, Hoshin V. Gupta, Soroosh Sorooshian, Alain N. Rousseau, and Richard Turcotte. 2003. Calibration of watershed models.
Rahman, Md Abiar, SuChul Kang, Nidhi Nagabhatla, and Robert Macnee. 2017. ′Impacts of temperature and rainfall variation on rice productivity in major ecosystems of Bangladesh′, J. Agric. Food Secur., 6: 1-11. https://doi.org/10.1186/s40066-017-0089-5
Rajsekhar, Deepthi, and Steven M Gorelick. 2017. ′Increasing drought in Jordan: Climate change and cascading Syrian land-use impacts on reducing transboundary flow′, J. Sci. Adv., 3: 1-16. https://doi.org/10.1126/sciadv.1700581
Raneesh, KY, and SG Thampi. 2013. ′Bias correction for RCM predictions of precipitation and temperature in the Chaliyar River Basin′, J. WAF, 1: 1-6. http://dx.doi.org/10.4172/2332-2594.1000105
Regasa, Motuma Shiferaw, Michael Nones, and Dereje Adeba. 2021. ′A review on land use and land cover change in Ethiopian basins′, J. Land, 10: 1-18. https://doi.org/10.3390/land10060585
Riahi, Keywan, Shilpa Rao, Volker Krey, Cheolhung Cho, Vadim Chirkov, Guenther Fischer, Georg Kindermann, Nebojsa Nakicenovic, and Peter Rafaj. 2011. ′RCP 8.5-A scenario of comparatively high greenhouse gas emissions′, Climatic Change, 109: 33. https://doi.org/10.1007/s10584-011-0149-y
Rogelj, Joeri, Malte Meinshausen, and Reto Knutti. 2012. ′Global warming under old and new scenarios using IPCC climate sensitivity range estimates′, J. Nat. Clim. Chang, 2: 248-53. https://doi.org/10.1038/nclimate1385
Roth, Vincent, Tatenda Lemann, Gete Zeleke, Alemtsehay Teklay Subhatu, Tibebu Kassawmar Nigussie, and Hans Hurni. 2018. ′Effects of climate change on water resources in the upper Blue Nile Basin of Ethiopia′, J. Heliyon, 4: 1-28. https://doi.org/10.1016/j.heliyon.2018.e00771
Roy, Apurba, and Mohammed Ziaul Haider. 2019. ′Stern review on the economics of climate change: implications for Bangladesh′, Int. J. Clim. Chang. Strateg. Manag., 11 100-17. https://doi.org/10.1108/IJCCSM-04-2017-0089
Saad, Ali Mansour Ali, Noresah Mohd Shariff, and Sanjay Gairola. 2011. ′Nature and causes of land degradation and desertification in Libya: Need for sustainable land management′, Afr. J. Biotechnol., 10: 13680-87. https://doi.org/10.5897/AJB11.1235
Salarpour, Mohsen. 2013. ′An assessment on base and peak flows using a physically-based model′, J. Environ. Earth Sci., 5: 49-57. https://www.researchgate.net/publication/258768973_An_Assessment_on_Base_and_Peak_Flows_Using_a_Physically-Based_Model (accessed, 28-02-2022).
Samy, Abeer, Mona G Ibrahim, Wael Elham Mahmod, Manabu Fujii, Amr Eltawil, and Waled Daoud. 2019. ′Statistical assessment of rainfall characteristics in Upper Blue Nile Basin over the period from 1953 to 2014′, J. Wate, 11: 468. https://doi.org/10.3390/w11030468
Samy, Abeer, Mona G Ibrahim, and Wael Elham Mahmod. 2018. ′Analysis of Stream Flow Trends in Sub-basins of the Upper Blue Nile Basin.′ in Ksibi M. Kallel A., Ben Dhia H., Khélifi N. (ed.), Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (Springer, Cham: Tunisia). https://doi.org/10.1007/978-3-319-70548-4_240
Santos, João Filipe, Maria Manuela Portela, and Inmaculada Pulido-Calvo. 2011. ′Regional frequency analysis of droughts in Portugal′, J. Water Resour. Manag., 25: 3537-58. https://doi.org/10.1007/s11269-011-9869-z
Schmidli, Jürg, Christoph Frei, and Pier Luigi Vidale. 2006. ′Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods′, Int. J. Climatol., 26: 679-89. https://doi.org/10.1002/joc.1287
Schreck III, Carl J, and Fredrick HM Semazzi. 2004. ′Variability of the recent climate of eastern Africa′, Int J Climatol., 24: 681-701. https://doi.org/10.1002/joc.1019
Schultz, HR. 2019. "Water in a warmer world- is atmospheric evaporative demand changing in viticultural areas." In BIO Web of Conferences, 1-5. Geisenheim, Germany. https://doi.org/10.1051/bioconf/20191201011
Schwalm, Christopher R, William RL Anderegg, Anna M Michalak, Joshua B Fisher, Franco Biondi, George Koch, Marcy Litvak, Kiona Ogle, John D Shaw, and Adam Wolf. 2017. ′Global patterns of drought recovery′, J. Nature, 548: 202-05. https://doi.org/10.1038/nature23021
Seiller, G, I Hajji, and F Anctil. 2015. ′Improving the temporal transposability of lumped hydrological models on twenty diversified US watersheds′, J. Hydrol. Reg. Stud., 3: 379-99. https://doi.org/10.1016/j.ejrh.2015.02.012
Seleshi, Yilma, and Ulrich Zanke. 2004. ′Recent changes in rainfall and rainy days in Ethiopia′, Int. J. Climatol., 24: 973-83. https://doi.org/10.1002/joc.1052
Sen, Pranab Kumar 1968. ′Estimates of the regression coefficient based on Kendall′s tau′, J. Am. Stat. Assoc., 63: 1379-89. https://doi.org/ 10.1080/01621459.1968.10480934
Senay, GB, S Leake, PL Nagler, G Artan, J Dickinson, JT Cordova, and EP Glenn. 2011. ′Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods′, J.Hydrol. Process., 25: 4037-49. https://doi.org/10.1002/hyp.8379
Setegn, Shimelis G, David Rayner, Assefa M Melesse, Bijan Dargahi, Ragahavan Srinivasan, and Anders Wörman. 2011. ′Climate change impact on agricultural water resources variability in the Northern Highlands of Ethiopia.′ in, Nile River Basin (Springer). https://doi.org/ 10.1007/978-94-007-0689-7
Shao, Guangwen, Yiqing Guan, Danrong Zhang, Baikui Yu, and Jie Zhu. 2018. ′The impacts of climate variability and land use change on streamflow in the Hailiutu river basin′, J. Water, 10: 1-26. https://doi.org/10.3390/w10060814
Sharannya, TM, Amogh Mudbhatkal, and A Mahesha. 2018. ′Assessing climate change impacts on river hydrology–A case study in the Western Ghats of India′, J. Earth Syst. Sci., 127: 1-11. https://doi.org/10.1007/s12040-018-0979-3
Sharma, Tarul, H Vittal, Subhankar Karmakar, and Subimal Ghosh. 2020. ′Increasing agricultural risk to hydro-climatic extremes in India′, J. Environ. Res. Lett., 15: 1-10. https://doi.org/10.1088/1748-9326/ab63e1
Sheffield, J, EF Wood, and M Roderick. 2012. ′Little change in global drought over the past 60 years Nature′, J. Nature Letter, 491: 435-40. https://doi.org/10.1038/nature11575
Shiferaw, Bekele, Kindie Tesfaye, Menale Kassie, Tsedeke Abate, BM Prasanna, and Abebe Menkir. 2014. ′Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options′, J.Weather. Clim. Extremes, 3: 67-79. https://doi.org/10.1016/j.wace.2014.04.004
Shope, Christopher L, Ganga Ram Maharjan, John Tenhunen, Bumsuk Seo, Kyongha Kim, J Riley, Sebastian Arnhold, Thomas Koellner, Yong Sik Ok, and Stefan Peiffer. 2014. ′Using the SWAT model to improve process descriptions and define hydrologic partitioning in South Korea′, J. Hydrol Earth Syst Sci . 18: 539-57. https://doi.org/10.5194/hess-18-539-2014
Singh, Vijay P, and Donald K Frevert. 2002. Mathematical models of large watershed hydrology (Water Resources Publication: Michigan, USA). https://www.wrpllc.com/books/mmlw.html (accessed, 02-03-2022).
Singh, Vijay P, and David A Woolhiser. 2002. ′Mathematical modeling of watershed hydrology′, J. Hydrol. Eng., 7: 270-92. https://doi.org/10.1061
Smithson, Peter A. 2002. "IPCC, 2001: climate change 2001: the scientific basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by JT Houghton, Y. Ding, DJ Griggs, M. Noguer, PJ van der Linden, X. Dai, K. Maskell and CA Johnson (eds). Cambridge University Press, Cambridge, UK, and New York, USA, 2001. No. of pages: 881. Price£ 34.95, US 49.95,ISBN0‐521‐01495‐6(paperback).£90.00,US 130.00, ISBN 0‐521‐80767‐0 (hardback)." In, 1017-147. Wiley Online Library. https://doi.org/10.1002/joc.763
Sokal, Robert R 1995. The principles and practice of statistics in biological research (W.H. Freeman: New York, USA). https://ci.nii.ac.jp/naid/10012404225/
Solomon G, Busnur Manjunatha &, and Gangadhar Bhta. 2019. ′Monthly to Inter-Decadal Rainfall Variability of the Southern Regional Sate of Ethiopia, Links with El Niño-Southern Oscillation′, J.GJSFR, 19 1-31. https://globaljournals.org/GJSFR_Volume19/2-Monthly-to-Inter-Decadal.pdf (accessed, 15-02-2021).
Song, Xiao-Meng, Fan-Zhe Kong, and Zhao-Xia Zhu. 2011. ′Application of Muskingum routing method with variable parameters in ungauged basin′, J. Water Sci. Eng., 4: 1-12. https://doi.org/10.3882/j.issn.1674-2370.2011.01.001
Srivastava, Prashant K, Dawei Han, Miguel A Rico-Ramirez, Michaela Bray, and Tanvir Islam. 2012. ′Selection of classification techniques for land use/land cover change investigation′, J. Adv. Space Res., 50: 1250-65. https://doi.org/10.1016/j.asr.2012.06.032
Štěpánek, P, P Zahradníček, and P Skalák. 2009. ′Data quality control and homogenization of air temperature and precipitation series in the area of the Czech Republic in the period 1961–2007′, J. Adv. Sci. Res., 3: 23-26. https://doi.org/10.5194/asr-3-23-2009
Suhaila, Jamaludin, and Zulkifli Yusop. 2018. ′Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia′, J.Meteorol. Atmospheric Phys., 130: 565-81. https://doi.org/10.1007/s00703-017-0537-6
Sunoj, VS, PV Prasad, Ignacio A Ciampitti, and Hanafey F Maswada. 2020. ′Narrowing diurnal temperature amplitude alters carbon tradeoff and reduces growth in C4 crop sorghum′, Front. Plant Sci., 11: 1262. https://doi.org/10.3389/fpls.2020.01262
Suryabhagavan, KV 2017. ′GIS-based climate variability and drought characterization in Ethiopia over three decades′, J.Weather Clim. Extreme, 15: 11-23. https://doi.org/10.1016/j.wace.2016.11.005
Swami, Vidula A, and Sushama S Kulkarni. 2016. ′Simulation of runoff and sediment yield for a Kaneri Watershed Using SWAT Model′, J. GEP, 4: 1-15. http://dx.doi.org/10.4236/gep.2016.41001
Tabari, Hossein, Hirad Abghari, and P Hosseinzadeh Talaee. 2012. ′Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran′, J. Hydrol. Process, 26: 3351-61. https://doi.org/10.1002/hyp.8460
Tadege, Abebe. 2007. ′Climate change national adaptation programme of action (Napa) of Ethiopia′, National Meteorological Services Agency, Ministry of Water Resources, Federal Democratic Republic of Ethiopia, Addis Ababa. https://www.preventionweb.net/files/8522_eth01.pdf (accessed, 05-01-2021).
Tadese, Mahtsente, Lalit Kumar, and Richard Koech. 2020. ′Long-term variability in potential evapotranspiration, water availability and drought under climate change scenarios in the Awash River Basin, Ethiopia′, J. Atmos., 11: 1-19. https://doi.org/10.3390/atmos11090883
Tadese, Mahtsente Tibebe, Lalit Kumar, Richard Koech, and Birhanu Zemadim. 2019. ′Hydro-Climatic Variability: A Characterisation and Trend Study of the Awash River Basin, Ethiopia′, J. Hydrol., 6: 1-19. https://doi.org/10.3390/hydrology6020035
Tang, Xiongpeng, Jianyun Zhang, Guoqing Wang, Junliang Jin, Cuishan Liu, Yanli Liu, Ruimin He, and Zhenxin Bao. 2021. ′Uncertainty Analysis of SWAT Modeling in the Lancang River Basin Using Four Different Algorithms′, J. Water, 13: 1-21. https://doi.org/10.3390/w13030341
Tapoglou, Evdokia, Anthi Eirini Vozinaki, and Ioannis Tsanis. 2019. ′Climate change impact on the frequency of hydrometeorological extremes in the island of crete′, J. Water, 11: 1-18. https://doi.org/10.3390/w11030587
Taye, Meron Teferi, Ellen Dyer, Feyera A Hirpa, and Katrina Charles. 2018. ′Climate change impact on water resources in the Awash basin, Ethiopia′, J. Water, 10: 1-16. https://doi.org/10.3390/w10111560
Taye, Mintesinot, Dejene Sahlu, Benjamin F Zaitchik, and Mulugeta Neka. 2020. ′Evaluation of Satellite Rainfall Estimates for Meteorological Drought Analysis over the Upper Blue Nile Basin, Ethiopia′, J. Geosci., 10: 1-21. https://doi.org/10.3390/geosciences10090352
Tazeze, Aemro, Jemma Haji, and Mengistu Ketema. 2012. ′Climate change adaptation strategies of smallholder farmers: the case of Babilie District, East Harerghe Zone of Oromia Regional State of Ethiopia′, J. Econ. Sustain. Dev., 3: 1-12. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1006.3270&rep=rep1&type=pdf (accessed, 10-02-2021).
Tegegne, Getachew, Dong Kwan Park, and Young-Oh Kim. 2017. ′Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin′, Journal of Hydrology: Regional studies, 14: 49-66. https://doi.org/10.1016/j.ejrh.2017.10.002
Tekle, Abadi. 2015. "Assessment of climate change impact on water availability of Bilate watershed, Ethiopian Rift Valley Basin." In AFRICON 2015, 1-5. Addis Ababa, Ethiopia IEEE. https://doi.org/10.1109/AFRCON.2015.7332041
Tekleab, S, Y Mohamed, and S Uhlenbrook. 2013. ′Hydro-climatic trends in the Abay/upper Blue Nile basin, Ethiopia′, J. Phys. Chem. Earth, 61: 32-42. https://doi.org/10.1016/j.pce.2013.04.017
Tesemma, Zelalem K, Yasir A Mohamed, and Tammo S Steenhuis. 2010. ′Trends in rainfall and runoff in the Blue Nile Basin: 1964–2003′, J. Hydrol. Process., 24: 3747-58. https://doi.org/10.1002/hyp.7893
Tesfamariam, Birhane Gebrehiwot, Berhan Gessesse, and Farid Melgani. 2019. ′Characterizing the spatiotemporal distribution of meteorological drought as a response to climate variability: The case of rift valley lakes basin of Ethiopia′, J. Weather Clim. Extreme, 26: 1-15. https://doi.org/10.1016/j.wace.2019.100237
Tessema, Hassen Ahmed Zewdu, and AdugnaTolera Diriba Korecha. 2017. ′Inter-connection Between El-Niño-Southern Oscillation Induced Rainfall Variability, Livestock Population Dynamics and Pastoralists Adaptation Strategies in Eastern Ethiopia′, J. Environ. Earth Sci., 7: 11-24. https://www.semanticscholar.org/paper/Inter-connection-Between-El-Ni%C3%B1o-Southern-Induced-Ahmed/78dd18de65f223d02e3fc1bc7657dfc1ec5a7f50 (accessed, 08-03-2022).
Teutschbein, Claudia, and Jan Seibert. 2012. ′Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods′, J. Hydrol., 456: 12-29. https://doi.org/10.1016/j.jhydrol.2012.05.052
Tewabe, Dires, and Temesgen Fentahun. 2020. ′Assessing land use and land cover change detection using remote sensing in the Lake Tana Basin, Northwest Ethiopia′, J. Cogent Environ. Sci., 6: 1-12. https://doi.org/10.1080/23311843.2020.1778998
Teyso, Tefera Ashine, Agena Anjulo, and Reports. 2016. ′Spatio-temporal Variability and Trends of Rainfall and Temperature over Gamo Gofa Zone, Ethiopia′, J. Sci. Res., 12: 1-11. https://doi.org/10.9734/JSRR/2016/28667
Thiemann, S, B Schütt, and Förch. 2004. "Development and Application of a Soil Erosion Risk Model. The Case of the Bilate River Catchment Area, South Ethiopia." In, 46-52. Siegen, Germany: FWU Water Resources Publications Siegen University. https://www.uni-siegen.de/zew/publikationen/fwu_water_resources/volume0204/thiemann-sch%C3%BCtt_f%C3%B6rch_-_development_and_application_of_.pdf (accessed, 10-03-2022).
Thiemann, Stefan, and Gerd Förch. 2005. "Water resources assessment in the Bilate river catchment-precipitation variability." In Lake Abaya Research Symposium, 53-78. Arba Minch, Ethiopia. https://www.uni-siegen.de/zew/publikationen/fwu_water_resources/volume0405/thiemann.pdf (accessed, 13-03-2022).
Thom, Herbert CS 1958. ′A note on the gamma distribution′, J. Mon. Weather Rev., 86: 117-22. https://doi.org/10.1175/1520-0493(1958)086<0117:ANOTGD>2.0.CO;2
Thomas, Evan A, Joseph Needoba, Doris Kaberia, John Butterworth, Emily C Adams, Phoebe Oduor, Denis Macharia, Faith Mitheu, Robinson Mugo, and Corey Nagel. 2019. ′Quantifying increased groundwater demand from prolonged drought in the East African Rift Valley′, J. Sci. Total Environ., 666: 1265-72. https://doi.org/10.1016/j.scitotenv.2019.02.206
Thompson, Stephen A. 2017. Hydrology for water management (CRC Press). https://doi.org/10.1201/9780203751435
Thomson, Allison M, Katherine V Calvin, Steven J Smith, G Page Kyle, April Volke, Pralit Patel, Sabrina Delgado-Arias, Ben Bond-Lamberty, Marshall A Wise, and Leon E Clarke. 2011. ′RCP4. 5: a pathway for stabilization of radiative forcing by 2100′, Climatic change, 109: 77. https://doi.org/10.1007/s10584-011-0151-4
Tigkas, D, H Vangelis, and G Tsakiris. 2013. "The drought indices calculator (DrinC)." In Proceedings of the 8th International Conference of EWRA: Water Resources Management in an Interdisciplinary and Changing Context, Porto, Portugal, 1334-42. https://doi.org/10.1007/s12145-014-0178-y
Tigkas, Dimitris, Harris Vangelis, and George Tsakiris. 2015. ′DrinC: a software for drought analysis based on drought indices′, Earth Science Informatics, 8: 697-709. https://doi.org/10.1007/s12145-014-0178-y
Tigkas, Dimitris, Harris Vangelis, and George Tsakiris. 2012. ′Drought and climatic change impact on streamflow in small watersheds′, J. Sci. Total Environ., 440: 33-41. https://doi.org/10.1016/j.scitotenv.2012.08.035
Tootle, Glenn A, and Thomas C Piechota. 2006. ′Relationships between Pacific and Atlantic ocean sea surface temperatures and US streamflow variability′, J. Water Resour. Res., 42: 1-14. https://doi.org/10.1029/2005WR004184
Trenberth, KE, JT Fasullo, GR Asrar, and J Mackaro. 2014. ′Global warming and changes in drought′, J. Nat. Climate Change, 4: 17-22. https://doi.org/10.1038/nclimate2067
Troin, Magali, Daniel Caya, Juan Alberto Velázquez, and François Brissette. 2015. ′Hydrological response to dynamical downscaling of climate model outputs: A case study for western and eastern snowmelt-dominated Canada catchments′, J. Hydrol. Reg. Stud., 4: 595-610. https://doi.org/10.1016/j.ejrh.2015.09.003
Tsakiris, G, I Nalbantis, D Pangalou, D Tigkas, and H Vangelis. 2008. "Drought meteorological monitoring network design for the reconnaissance drought index (RDI)." In Proceedings of the 1st International Conference “Drought management: scientific and technological innovations”. Zaragoza, Spain: option Méditerranéennes, series A, 57-62. Citeseer. http://om.ciheam.org/article.php?IDPDF=800419
Tsakiris, G, D Pangalou, and H Vangelis. 2007. ′Regional drought assessment based on the Reconnaissance Drought Index (RDI)′, J. Water Resour. Plan. Manag., 21: 821-33. https://doi.org/10.1007/s11269-006-9105-4
Tsakiris, G, G Rossi, A Iglesias, N Tsiourtis, L Garrote, and A Cancelliere. 2006. "Drought indicators report." In Report made for the needs of the European Research Program MEDROPLAN.
Tsakiris, G, and HJEW Vangelis. 2005. ′Establishing a drought index incorporating evapotranspiration′, J. E-Water, 9: 3-11. http://danida.vnu.edu.vn/cpis/files/Refs/Drought/Establishing%20a%20Drought%20Index%20Incorporating%20Evapotranspiration.pdf (accessed, 02-11-2021).
Tsanis, Ioannis K, Aristeidis G Koutroulis, Ioannis N Daliakopoulos, and Daniela Jacob. 2011. ′Severe climate-induced water shortage and extremes in Crete′, J. Clim. Change, 106: 667-77. https://doi.org/10.1007/s10584-011-0048-2
Ukkola, Anna M, Martin G De Kauwe, Michael L Roderick, Gab Abramowitz, and Andrew J Pitman. 2020. ′Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation′, J. Geophys. Res. Lett., 47: 1-14. https://doi.org/10.1029/2020GL087820
Van Huijgevoort, MHJ, P Hazenberg, HAJ Van Lanen, and R Uijlenhoet. 2012. ′A generic method for hydrological drought identification across different climate regions′, Hydrology and Earth System Sciences, 16: 2437-51. https://doi.org/10.5194/hess-16-2437-2012
Van Loon, Anne Frederike. 2013. ′On the propagation of drought: how climate and catchment characteristics influence hydrological drought development and recovery′, Wageningen University.https://www.proquest.com/docview/2572453130?pq-origsite=gscholar&fromopenview=true (accessed, 25-11-2021).
Van Roosmalen, Lieke, Jens H Christensen, Michael B Butts, Karsten H Jensen, and Jens C Refsgaard. 2010. ′An intercomparison of regional climate model data for hydrological impact studies in Denmark′, J. Hydrol., 380: 406-19. https://doi.org/10.1016/j.jhydrol.2009.11.014
Van Vuuren, Detlef P, Jae Edmonds, Mikiko Kainuma, Keywan Riahi, Allison Thomson, Kathy Hibbard, George C Hurtt, Tom Kram, Volker Krey, and Jean-Francois Lamarque. 2011. ′The representative concentration pathways: an overview′, J. Clim. Change, 109: 5-31. https://doi.org/10.1007/s10584-011-0148-z
Vezzoli, Renata, Silvano Pecora, Enrica Zenoni, and Fabrizio Tonelli. 2012. ′Data analysis to detect inhomogeneity, change points, trends in observations: an application to Po river discharge extremes′, J. CMCC: 1-15. http://dx.doi.org/10.2139/ssrn.2195345
Vicente-Serrano, Sergio M, Gerard Van der Schrier, Santiago Beguería, Cesar Azorin-Molina, and Juan-I Lopez-Moreno. 2015. ′Contribution of precipitation and reference evapotranspiration to drought indices under different climates′, J. Hydrol., 526: 42-54. https://doi.org/10.1016/j.jhydrol.2014.11.025
Viste, Ellen, Diriba Korecha, and Asgeir Sorteberg. 2013. ′Recent drought and precipitation tendencies in Ethiopia′, J. Theor. Appl. Climatol., 112: 535-51. https://doi.org/10.1007/s00704-012-0746-3
Wagener, T, N McIntyre, MJ Lees, HS Wheater, and HV Gupta. 2003. ′Towards reduced uncertainty in conceptual rainfall‐runoff modelling: Dynamic identifiability analysis′, J. Hydrol. Process., 17: 455-76. https://doi.org/10.1002/hyp.1135
Wagesho, Negash 2014. ′Catchment dynamics and its impact on runoff generation: coupling watershed modelling and statistical analysis to detect catchment responses′, int. j. water resour. environ. eng., 6: 73-87. https://doi.org/10.5897/IJWREE2013.0449
Wagesho, Negash, NK Goel, and MK Jain. 2013. ′Temporal and spatial variability of annual and seasonal rainfall over Ethiopia′, J. Hydrol. Sci., 58: 354-73. https://doi.org/10.1080/02626667.2012.754543
Wang, Houjie, Zuosheng Yang, Yoshiki Saito, J Paul Liu, and Xiaoxia Sun. 2006. ′Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: connections to impacts from ENSO events and dams′, J. Glob. Planet Change, 50: 212-25. https://doi.org/10.1016/j.gloplacha.2006.01.005
Wang, Huaijun, Yaning Chen, Yingping Pan, and Weihong Li. 2015. ′Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices′, J. Hydrol., 523: 283-96. https://doi.org/10.1016/j.jhydrol.2015.01.055
Wang, Jun, Zhongmin Liang, Dong Wang, Tian Liu, and Jing Yang. 2016. ′Impact of climate change on hydrologic extremes in the upper basin of the Yellow River Basin of China′, Advances in Meteorology, 2016. https://doi.org/10.1155/2016/1404290
Wannasin, C, CC Brauer, R Uijlenhoet, WJ van Verseveld, and Albrecht H Weerts. 2021. ′Daily flow simulation in Thailand Part I: Testing a distributed hydrological model with seamless parameter maps based on global data′, J. Hydrol. Reg. Stud., 34: 1-19. https://doi.org/10.1016/j.ejrh.2021.100794
Weldegerima, Tesfay Mekonnen, Tadesse Terefe Zeleke, Belay Simane Birhanu, Benjamin Frederick Zaitchik, and Zewdu Alamineh Fetene. 2018. ′Analysis of rainfall trends and its relationship with SST signals in the Lake Tana Basin, Ethiopia′, J. Adv. Meteorol., 2018: 1-10. https://doi.org/10.1155/2018/5869010
Wijngaard, JB, AMG Klein Tank, and GP Können. 2003. ′Homogeneity of 20th century European daily temperature and precipitation series′, Int. J. Climatol., 23: 679-92. https://doi.org/10.1002/joc.906
Wilbanks, Thomas J, and Robert W Kates. 2010. ′Beyond adapting to climate change: embedding adaptation in responses to multiple threats and stresses′, J. Ann. Assoc. Am. Geogr., 100: 719-28. https://doi.org/10.1080/00045608.2010.500200
Williams, Jimmy R 1995. ′The EPIC Model and Its Application′, J. Computer models of watershed hydrology.: 1-226. http://oar.icrisat.org/812/1/RA_00071.pdf#page=121 (accessed, 28-02-2022).
WMO. 1989. "Calculation of monthly and annual 30-year standard normals." In, 1-13. Switzerland, Geneva 2. https://www.posmet.ufv.br/wp-content/uploads/2016/09/MET-481-WMO-341.pdf (accessed, 08-06-2021).
WMO, GWP, and G GWP. 2016. ′Handbook of Drought Indicators and Indices′, Geneva., IDMP. https://www.researchgate.net/publication/319542350_Handbook_of_Drought_Indicators_and_Indices (accessed, 22-11-2021)
WMO, World Meteorological Organization. 1966. "Technical Note Number 79." In, 1-79. https://books.google.com.tw/books/about/World_Meteorological_Organization_Techni.html?id=orUMtAEACAAJ&redir_esc=y (accessed, 10-06-2021).
Wodaje, Getahun Garedew. 2017. ′Local adaptation practice in response to climate change in the Bilate River Basin, Southern Ethiopia′, University of South Africa (UNISA). http://hdl.handle.net/10500/22998
Wodaje, Getahun Garedew, Zewdu Eshetu Asfaw, and Mekuria Argaw Denboba. 2021. ′Impacts and uncertainties of climate change on stream flow of the Bilate River (Ethiopia), using a CMIP5 general circulation models ensemble′, IJWREE, 13: 64-75. https://doi.org/10.5897/IJWREE2020.0973
Wodaje, Getahun Garedew, Zewdu Eshetu, and Mekuria Argaw. 2016. ′Temporal and spatial variability of rainfall distribution and evapotranspiration across altitudinal gradient in the Bilate River Watershed, Southern Ethiopia′, J. AJEST, 10: 167-80. https://doi.org/10.5897/AJEST2015.2029
Wolde-Georgis, T, D Aweke, and Y Hagos. 2000. "The case of Ethiopia reducing the impacts of environmental emergencies through early warning and preparedness: The case of the 1997–98 El Niño." In, 1-73. Addis Ababa, Ethiopia: National Meteorological Service Agency (NMSA). https://archive.unu.edu/env/govern/ElNIno/CountryReports/pdf/ethiopia.pdf (accessed, 05-01-2021).
Wolde-Georgis, Tsegay 1997. ′El Nino and drought early warning in Ethiopia′, J. Afr. Stud., 1: 1-10. https://ssrn.com/abstract=1589710 (accessed, 07-01-2021).
Worku, Gebrekidan, Ermias Teferi, Amare Bantider, and Yihun T Dile. 2021. ′Modelling hydrological processes under climate change scenarios in the Jemma sub-basin of upper Blue Nile Basin, Ethiopia′, J. Clim. Risk Manag, 31: 1-24. https://doi.org/10.1016/j.crm.2021.100272
Worqlul, Abeyou Wale, Yihun Taddele Dile, Essayas Kaba Ayana, Jaehak Jeong, Anwar Assefa Adem, and Thomas Gerik. 2018. ′Impact of climate change on streamflow hydrology in headwater catchments of the Upper Blue Nile Basin, Ethiopia′, J. Water, 10: 1-20. https://doi.org/10.3390/w10020120
Wuebbles, Donald J, David W Fahey, Kathy A Hibbard, Jeff R Arnold, Benjamin DeAngelo, Sarah Doherty, David R Easterling, James Edmonds, Timothy Edmonds, and Timolthy Hall. 2017. "Climate science special report: Fourth national climate assessment (NCA4), Volume I." In, 1-477. Washington, DC, USA. https://repository.library.noaa.gov/view/noaa/19486/noaa_19486_DS1.pdf
Xiong, Lihua, and Shenglian Guo. 2011. ′Trend test and change point detection for the annual discharge series of the Yangtze River at the Yichang hydrological station.′, J. Hydrol. Sci., 49: 99-112. https://doi.org/10.1623/hysj.49.1.99.53998
Xu, C-Y, and VP Singh. 2002. ′Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland′, J. Water Resour. Manag., 16: 197-219. https://doi.org/10.1023/A:1020282515975
Yaduvanshi, Aradhana, Prashant Srivastava, Abeyou W Worqlul, and Anand Kr Sinha. 2018. ′Uncertainty in a Lumped and a Semi-Distributed Model for Discharge Prediction in Ghatshila Catchment′, J. Water, 10: 1-18. https://doi.org/10.3390/w10040381
Yang, Hanbo, Dawen Yang, Zhidong Lei, and Fubao Sun. 2008. ′New analytical derivation of the mean annual water‐energy balance equation′, J. Water Resour. Res., 44: 1-9. https://doi.org/10.1029/2007WR006135
Yang, TC, C Chen, CM Kuo, HW Tseng, and PS Yu. 2012. ′Drought risk assessments of water resources systems under climate change: a case study in Southern Taiwan′, J. Hydrol. Earth Syst. Sci., 9: 12395-433. https://doi.org/10.5194/hessd-9-12395-2012
Yue, Sheng, Paul Pilon, and George Cavadias. 2002. ′Power of the Mann–Kendall and Spearman′s rho tests for detecting monotonic trends in hydrological series′, J. Hydrol., 259: 254-71. https://doi.org/10.1016/S0022-1694(01)00594-7
Zarch, Mohammad Amin Asadi, Bellie Sivakumar, and Ashish Sharma. 2015. ′Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI)′, J. Hydrol., 526: 183-95. https://doi.org/10.1016/j.jhydrol.2014.09.071
Zarenistanak, Mohammad, Amit G Dhorde, and RH Kripalani. 2014. ′Trend analysis and change point detection of annual and seasonal precipitation and temperature series over southwest Iran′, J. Earth Syst. Sci., 123: 281-95. https://doi.org/10.1007/s12040-013-0395-7
Zargar, Amin, Rehan Sadiq, Bahman Naser, and Faisal I Khan. 2011. ′A review of drought indices′, J. Environ. Rev., 19: 333-49. https://doi.org/10.1139/a11-013
Zena, Kokeb, Tamene Adugna, and Fekadu Fufa. 2020. ′Trend Analysis of Climate variables, Streamflow and their Linkage at Modjo River Watershed, Central Ethiopia′, J. Environ. Syst. Res.: 1-26. https://doi.org/10.21203/rs.3.rs-16796/v1
Zhai, Jianqing, Sanjit Kumar Mondal, Thomas Fischer, Yanjun Wang, Buda Su, Jinlong Huang, Hui Tao, Guojie Wang, Waheed Ullah, and Md Jalal Uddin. 2020. ′Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia′, J. Atmos. Res., 246: 1-18. https://doi.org/10.1016/j.atmosres.2020.105111
Zhang, Donghua, Henrik Madsen, Marc E Ridler, Jens C Refsgaard, and Karsten H Jensen. 2015. ′Impact of uncertainty description on assimilating hydraulic head in the MIKE SHE distributed hydrological model′, J. Adv. Water Resour., 86: 400-13. https://doi.org/10.1016/j.advwatres.2015.07.018
Zhao, Chuang, Bing Liu, Shilong Piao, Xuhui Wang, David B Lobell, Yao Huang, Mengtian Huang, Yitong Yao, Simona Bassu, and Philippe Ciais. 2017. ′Temperature increase reduces global yields of major crops in four independent estimates′, J. PNAS, 114: 9326-31. https://doi.org/10.1073/pnas.1701762114
Zhao, Guangju, Georg Hörmann, Nicola Fohrer, Zengxin Zhang, and Jianqing Zhai. 2010. ′Streamflow trends and climate variability impacts in Poyang Lake Basin, China′, J. Water Resour. Manag., 24: 689-706. https://doi.org/10.1007/s11269-009-9465-7
Zhao, Jing, Shengzhi Huang, Qiang Huang, Hao Wang, and Guoyong Leng. 2018. ′Detecting the dominant cause of streamflow decline in the Loess Plateau of china based on the latest Budyko equation′, J. Water, 10: 1-19. https://doi.org/10.3390/w10091277
Ziegler, Martin, Margit H Simon, Ian R Hall, Stephen Barker, Chris Stringer, and Rainer Zahn. 2013. ′Development of Middle Stone Age innovation linked to rapid climate change′, J. Nat. Commun., 4: 1-9. https://doi.org/10.1038/ncomms2897
Zisopoulou, K, D Zisopoulos, and D Panagoulia. 2022. "Water Economics: An In-Depth Analysis of the Connection of Blue Water with Some Primary Level Aspects of Economic Theory I. Water 2022, 14, 103." In. https://doi.org/10.3390/w14010103
指導教授 李明旭博士(Ming-Hsu Li) 審核日期 2022-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明