博碩士論文 91322009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:3.141.35.27
姓名 陳晏閣(Yen-Ko Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 F.E.Udwadia系統識別公式之探討
(Investigate the identification formulae which are proposed by F.E.Udwadia.)
相關論文
★ 各種載重作用下neo-Hookean材料微孔動態分析★ 劉氏保群算法於高雷諾數Burgers方程之應用及探討
★ 彈性材料圓孔非對稱變形近似解研究★ HAF描述含圓孔橡膠材料三軸壓縮變形的誤差分析
★ 國立中央大學-HAF描述圓形微孔非對稱變形的誤差計算★ 多微孔橡膠材料受拉變形平面應力分析
★ 非線性彈性固體微孔變形特性★ 鋼絲網加勁高韌性纖維混凝土於RC梁構件剪力補強研究
★ 高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響★ 材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響
★ 搜尋週期為四年時使用SDICAE作強震預測的最佳精度設定★ 牛頓型疊代法二次項效應
★ GEH理論壓密量速算式★ 擴散管流量解析解
★ 宏觀收斂迭代法速度比較★ 二次項效應混合型牛頓疊代法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 系統識別在近年來愈來愈受到重視,有許多的專家學者提出各種不同的識別公式,本文即是針對F.E.Udwadia於1978年提出的識別公式加以探討。在本文中有探討拉普拉斯轉換在數值計算上解析解與數值解之間的誤差,並運用傅立葉SINE級數解決拉普拉斯轉換在参數趨近無窮大的數值計算問題,最後在本文中提出了一個新的識別公式。
摘要(英) In recent years, system identification has been attracted more and more attention. Scholars proposed many kinds of identification formulae. The goal of this study is to investigate the formulae which are proposed by F.E.Udwadia in 1978. In this study confer the errors between exact solution and numerical solution in numerical computation of Laplace transformation and by use of Fourier sine series to solve the numerical problems while parameter of Laplace transformation approach infinity. Finally, in this paper, it is proposed a new identification formula.
關鍵字(中) ★ 傅立葉SINE級數
★ 拉普拉斯轉換
★ 系統識別
關鍵字(英) ★ system identification
★ Laplace transformation
★ Fourier sine series
論文目次 目錄
_________________________________________________________________ 頁次
第一章 概論 1
1-1研究之動機與目的 1
1-2文獻回顧 1
1-3論文內容 2
第二章 F.E.Udwadia之系統識別公式介紹 3
2-1系統模型之介紹 3
2-2識別方法一 4
2-3識別方法二 5
第三章 拉普拉斯轉換之探討 8
3-1拉普拉斯轉換之公式 8
3-2拉普拉斯轉換於數值計算時之誤差 8
3-3數值計算於拉普拉斯轉換結論 18
第四章 傅立葉SINE級數 19
4-1傅立葉SINE級數之觀念 19
4-2利用傅立葉SINE級數來計算拉普拉斯轉換 20
4-3利用傅立葉SINE級數來計算拉普拉斯轉換結論 23
第五章 公式修正 24
5-1修正方法一 24
5-2修正方法二 26
第六章 數值驗證 29
6-1所使用的地震資料及樓房資料 29
6-2使用Udwadia之公式識別阻尼與勁度 33
6-3使用修正後的公式識別阻尼與勁度 58
6-4探討時間間距對識別阻尼之影響 75
6-5探討時間間距對識別勁度之影響 87
6-6探討時間間距對新推導出的迭代公式之影響 99
第七章 結論與建議 101
7-1結論 101
7-2建議 102
參考文獻 103
附錄 106
參考文獻 參考文獻
1.Yao JTP, Natke HG. Damage detection and reliability evaluation of existing
structures. Structural Safety 1994; 15:3-16.
2.Agbabian MS. Masri SF, Miller RK, Caughey TK. System identification approach
to detection of structural changes. Journal of Engineering Mechanics ASCE
1991; 117(2): 370-390.
3.Masri SF, Nakamura M, Chassiakos AG, Caughey TK. A neural network approach
to the detection of changes in structural parameters. Journal of Engineering
Mechanics ASCE 1996; 122(4): 350-360.
4.Hart GC, Yao JTP. System identification in structural dynamics. Journal of
Engineering Mechanics Division ASCE1977; 103(EM6): 1089-1104.
5.Beck JL, Jennings PC. Structural identification using linear models and
earthquake records. Earthquake Engineering and Structural Dynamics 1980; 8:
145-160.
6.Hoshiya M, Saito E. Structural identification by extended Kalman filter.
Journal of Engineering Mechanics ASCE 1984; 110(12): 1757-1770.
7.Koh CG, See LM, Balendra T. Estimation of structural parameters in time
domain: a substructure approach. Earthquake Engineering and Structural
Dynamics 1991; 20: 787-801.
8.Hjelmstad KD, Banan MoR, Banan MaR. On building finite element models of
structures from modal response. Earthquake Engineering and Structural
Dynamics 1995; 24: 53-67.
9.Hjelmstad KO. On the uniqueness of modal parameter estimation. Journal of
Sound and Vibration 1996; 192(2):581-598.
10.Ghanem R, Shinozuka M. Structural-system identification 1: theory.
Journal of Engineering Mechanics ASCE 1995;121(2): 255-264.
11.Shinozuka M, Ghanem R. Structural-system identification II: experimental
verification. Journal of Engineering Mechanics ASCE 1995; 121(2): 265-273.
12.Kitada Y. Identification of nonlinear structural dynamic systems using
wavelets. Journal of Engineering Mechanics ASCE 1998; 124(10): 1059-1066.
13.Doebling SW, Farrar CR, Prime MB, Shevitz DW. Damage
identification and health monitoring of structural and mechanical
systems from changes in their vibration characteristics: a literature
review.ReportLA-13070-MS,Los Alamos National Laboratory,1996.
14.Housner G et al. Special issue, Structural control: past, present, and
future. Journal of Engineering Mechanics ASCE 1997; 123(9): 897-971.
15.Takewaki, 1., and Nakamura, M., “Stiffliess-damping simultaneous
identification using limited earthquake records”, Earthqu. Eng. Struct.
Dyn., 29, 2000, pp.1219-1238.
16.Safak, E., “Analysis of earthquake records from structures: an overview”,
Strong motion Instrumentation for Civil Engineering Structures, M. Erdik et
al., eds., Kiuwer Academic Publishers, The Netherlands, 2001, pp. 91-107.
17.Udwadia FE, Sharma DK, Shah PC. Uniqueness of damping and stiffness
distributions in the identification of soil and structural systems. Journal
of Applied Mechanics, ASME 1978; 45: 181-187.
18.Chopra, A. K., “Dynamics of Structures: Theory and Applications to
Earthquake Engineering (2~u~ edn)”, Prentice-Hall, Inc., Upper Sadd River,
NJ, 2001.
19.Research notes written by Hin-Chi Lei, 2004. (to be publish)
20.Mahendra P. Singh , Luis E . Suarez and Rildova ,“Seismic response of
rail-counterweight system in elevators”, Earthqu. Eng. Struct. Dyn., 33,
2002, pp.281-303.
指導教授 李顯智(Hin-Chi Lei) 審核日期 2004-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明