博碩士論文 109225007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:3.144.244.222
姓名 吳宣廷(Xuan-Ting Wu)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(Sparse Bayesian Estimation with High-dimensional Binary Response Data)
相關論文
★ 長期追蹤資料上的 Gamma-EM 分群★ Contrastive Principal Component Analysis for High Dimension, Low Sample Size Data
★ Bayesian method for sparse principal component analysis★ Q學習結合監督式學習在股票市場的應用
★ γ-EM approach to latent orientations for cryo-electron microscopy image clustering analysis★ 隱私差分應用於聯邦式水平分割主成分分析
★ Contrastive Principal Component Analysis for High-Dimension, Low-Sample-Size Data with Noise-Reduction★ γ-SUP 演算法在 NBA 資料分析上的應用
★ 基於Q-learning與非監督式學習之交易策略★ 視覺化股票市場之狀態變動
★ Principal Components on t-SNE★ gamma-SUP on PCA
★ 高維度環境下Kronecker包絡主成分分析的漸近性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們在具有高維矩陣值協變量數據的邏輯線性模型中考慮貝葉斯估計,特別是在超高維數據中。這項研究的動機是在經典的邏輯式模型中擴展貝葉斯方法。所提出的估計可以應用於在分類方法上,比較多的案例是有關於有無疾病,事件的是否發生,例如張量判別分析以及常見的成像研究、遺傳學等。我們用模擬研究和陶瓷樣品的化學成分數據集來展示所提出的方法。
摘要(英) We consider Bayesian estimation in a logistic linear model with high-dimensional matrixvalued covariate data, especially in ultra-high-dimensional data. The motivation for this
study is to develop the Bayesian approach in classical logistic-style models. The proposed estimates can be applied to classification problems, most of which are related to the presence or absence of diseases and the occurrence of events, such as tensor discriminant analysis and common imaging studies, genetics, etc. Simulation studies and a dataset of the chemical composition of a dataset demonstrate the proposed method.
關鍵字(中) ★ 貝葉斯
★ 高維度
★ 邏輯式模型
★ 貝式推論
★ 三參數beta 正態
關鍵字(英) ★ Bayesian
★ high-dimensional
★ logistic model
★ Bayesian Inference
★ Three Parameter Beta Normal
論文目次 1 Introduction 1
1.1 MCMC method and Gibbs sampling Algorithm 2
1.2 P´olya-Gamma (PG) distribution 6
2 Logistic regression model 11
3 Bayesian method for logistic model 13
3.1 Three Parameter Beta Normal family (TPBN) 13
3.2 Bayesian method 15
3.3 Algorithm 15
4 Numerical Study 17
4.1 Simulation 17
4.2 Empirical Study 20
5 Conclusion 22
Bibliography 23
參考文獻 Armagan, Artin, Dunson, David B and Clyde, Merlise. (2011). Generalized beta mixtures of gaussians. Advances in Neural Information Processing Systems, 24, 523.
A.Bhattacharya, A.Chakraborty, Bk.Mallick. (2016). Fast sampling with Gaussian scale mixture priors in high-dimensional regression. Biometrika, 103, 985-991.
A.Bhadr, J.Datta, N.G, Polson B, Willard. (2017). The horseshoe+ estimator of ultra-sparse signals. Bayesian Arial, 12, 1105-1131.
Bai, Ray and Ghosh, Malay. (2018). High-dimensional multivariate posterior consistency under globallocal shrinkage priors. Journal of Multivariate Analysis, 167, 157-170.
Cao, Xuan, Khare, Kshitij and Ghosh, Malay. (2020). High-dimensional posterior consistency for hierarchical non-local priors in regression. Bayesian Anal., 15, 241-262.
Du, Xiaohui, Wang, Xiangzhou, Zhang, Jing and Ni, Guangming. (2021). Leucorrhea microscopy dataset.
Mejia, Amanda, Yue, Yu, Bolin, David, Lindgren, Finn and Lindquist, Martin. (2017). A bayesian general linear modeling approach to cortical surface fmri data analysis. journal of the American Statistical Association.
Penny, William D, Roberts, Stephen J, Curran, Eleanor A and Stokes, Maria J. (2000). Eegbased communication: a pattern recognition approach. IEEE transactions on Rehabil-itation Engineering, 8, 214-215.
Rieger, K., Hong, W., Tusher, V., Tang, J., Tibshirani, R. and Chu, G. (2004). Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 101, 6634-6640.
指導教授 王紹宣(Shao-Hsuan Wang) 審核日期 2022-9-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明