博碩士論文 108523046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:125 、訪客IP:3.139.79.137
姓名 藍順議(Shun-I Lan)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 多無人機無線充電通訊之離線優化:飛行軌跡、節點關聯及功率控制設計
(Offline Optimization for Multi-UAV Enabled Wireless Powered Communications: UAV Trajectory, User Association and Power Control Designs)
相關論文
★ 基於干擾對齊方法於多用戶多天線下之聯合預編碼器及解碼器設計★ 應用壓縮感測技術於正交分頻多工系統之稀疏多路徑通道追蹤與通道估計方法
★ 應用於行動LTE 上鏈SC-FDMA 系統之通道等化與資源分配演算法★ 以因子圖為基礎之感知無線電系統稀疏頻譜偵測
★ Sparse Spectrum Detection with Sub-blocks Partition for Cognitive Radio Systems★ 中繼網路於多路徑通道環境下基於領航信號的通道估測方法研究
★ 基於代價賽局在裝置對裝置間通訊下之資源分配與使用者劃分★ 應用於多用戶雙向中繼網路之聯合預編碼器及訊號對齊與天線選擇研究
★ 多用戶波束成型和機會式排程於透明階層式蜂巢式系統★ 應用於能量採集中繼網路之最佳傳輸策略研究設計及模擬
★ 感知無線電中繼網路下使用能量採集的傳輸策略之設計與模擬★ 以綠能為觀點的感知無線電下最佳傳輸策略的設計與模擬
★ 二使用者於能量採集網路架構之合作式傳輸策略設計及模擬★ 基於Q-Learning之雙向能量採集通訊傳輸方法設計與模擬
★ 多輸入多輸出下同時訊息及能量傳輸系統之設計與模擬★ 附無線充電裝置間通訊於蜂巢式系統之設計與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來無人機由於其成本低廉和功能豐富而在無線通訊和運輸系統中得到了大量的應用,藉由可控的移動性以及部屬的靈活性,讓無人機可以為佈署在複雜、危險區域的通訊節點提供服務,由於這些節點所處的位置不易抵達,以有線方式輸送能量易使線路的架設及維護困難,所以這些節點的運作勢必得依賴本身的電池作為電力來源,長期運作之下可能會導致節點出現電力不足的問題,而利用無人機的無線充電能力則可有效的解決,但無人機的飛行與充電能力受限於本身搭載電池的電力限制,因此有效地規劃無人機通訊的資源分配是一大設計挑戰。
本研究考慮多個獵能節點利用無人機下鏈無線充電來進行上鏈通訊傳輸資料至多台無人機,探討無人機功率控制策略、飛行軌跡以及無人機與節點通訊關聯,以有效管理多台無人機在通訊環境下的同頻干擾,為確保公平性,採用最大化所有節點的最小資料傳輸率作為設計目標。此聯合設計是一個高度非凸問題,並且需要完美知道未來時間的通道狀態資訊,然而這在現實環境中很難預測得知。為克服這些設計難題,本研究提出一種基於凸優化的離線方法,該方法僅利用統計平均的通道狀態資訊,通過應用交替優化和連續凸逼近將問題轉化成三個凸子問題,進而求得無人機功率控制、飛行軌跡以及無人機與節點通訊關聯的離線策略。
摘要(英) In recent years, unmanned aerial vehicles (UAVs) have been used in a large number of wireless communication and transportation systems due to their low cost and rich functionality. The controlled mobility and flexibility of their components allow UAVs to serve communication nodes deployed in complex and hazardous areas. Since these nodes are located in inaccessible locations, the wired transmission of energy makes it difficult to set up and maintain the lines, so the operation of these nodes must rely on their own batteries as a source of power, which may lead to power shortage problems at the nodes over a long period of time, and the wireless charging capability of UAVs can effectively solve the problem. However, the flight and charging capability of UAVs are limited by the power capacity of their own batteries, so the effective planning of resource allocation for UAV communication is a major design challenge.
In this thesis, we consider multiple energy-harvested nodes to transmit data to multiple UAVs using UAV downlink wireless power transfer for uplink communication, and investigates UAV power control strategies, flight trajectories, and UAV-node communication links to effectively manage co-channel interference of multiple UAVs in the communication environment. To ensure fairness, the design objective is to maximize the worst-case node total data transfer rate. The joint design problem is highly non-convex and requires the causal (future) knowledge of the channel state information (CSI), which is difficult to predict in reality. To overcome these design challenges, this paper proposes an offline method based on convex optimization that only utilizes the average CSI and solve the problem via three convex sub-problems by applying alternating optimization and successive convex approximation (SCA) to find the offline strategy for UAV power control, flight trajectory, and UAV-node communication association.
關鍵字(中) ★ 無人機通訊
★ 無線充電通訊
★ 軌跡設計
★ 通訊關聯
★ 功率控制
★ 凸優化
關鍵字(英) ★ Unmanned aerial vehicle (UAV) communication
★ wireless powered transfer (WPT) communications
★ UAV trajectory
★ communication association
★ power control
★ convex optimization
論文目次 摘要.......................................................i
Abstract..................................................ii
致謝......................................................iv
目錄.......................................................v
圖目錄...................................................vii
表目錄....................................................ix
符號說明...................................................x
第一章 緒論................................................1
1-1 研究背景與動機..........................................1
1-2 研究目的與問題..........................................3
1-3 文獻探討...............................................4
1.3.1無人機於無線通訊系統之應用..............................4
1.3.2無人機於具有無線充電功能之無線通訊系統應用...............4
1-4 論文貢獻..............................................15
第二章 研究背景介紹........................................16
2-1 無人機通訊系統 (UAV Communication System)..............16
2-2 能量獵取 (Energy Harvesting)..........................18
2-3 凸優化 (Convex Optimization)..........................19
2-4 一階泰勒展開 (First Order Taylor Expansion)............20
2-5 連續凸逼近 (Successive Convex Approximation)..........21
第三章 多無人機系統之多獵能節點上鏈通訊......................22
3-1 系統模型..............................................22
3-2 最佳化問題............................................26
第四章 多無人機系統之多獵能節點上鏈通訊的離線凸優化設計.......28
4-1 無人機發射功率優化.....................................30
4-2 無人機飛行軌跡優化.....................................32
4-3 無人機與節點通訊關聯優化................................42
4-4 功率控制、飛行軌跡及節點關聯聯合優化演算法...............43
4-5 演算法收斂性...........................................44
第五章 模擬結果............................................46
5-1 不同雜訊功率與傳輸時間分配比之比較.......................53
5-2 離線優化收斂圖.........................................55
5-3 不同環境優化比較.......................................56
5-4 不同節點數量與無人機電池容量比較........................58
5-5 不同傳輸時間分配比之無人機飛行軌跡圖.....................61
5-6 不同無人機電池容量與傳輸分配比之比較.....................64
5-7 不同無人機電池容量與最大飛行速度比較.....................65
5-8 離線聯合凸優化方法與次優化方法比較.......................67
第六章 結論...............................................70
第七章 附錄...............................................71
7-1附錄A..................................................71
7-2附錄B..................................................73
7-3附錄C..................................................75
7-4附錄D..................................................77
參考文獻..................................................79
參考文獻 [1] S. Hayat, E. Yanmaz and R. Muzaffar, "Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint", IEEE Commun. Surv. Tut., vol. 18, no. 4, pp. 2624–2661, Oct.–Dec. 2016.
[2] Y. Zeng, R. Zhang and T. J. Lim, "Wireless communications with unmanned aerial vehicles: Opportunities and challenges", IEEE Commun. Mag., vol. 54, no. 5, pp. 36–42, May 2016.
[3] B. Mao, Y. Kawamoto and N. Kato, "AI-based joint optimization of QoS and security for 6G energy harvesting Internet of Things", IEEE Internet Things J., vol. 7, no. 8, pp. 7032–7042, Aug. 2020.
[4] K. Zhang, S. Leng, X. Peng, P. Li, S. Maharjan and Y. Zhang, "Artificial intelligence inspired transmission scheduling in cognitive vehicular communications and networks", IEEE Internet Things J., vol. 6, no. 2, pp. 1987–1997, Apr. 2019.
[5] T. Rodrigues, K. Suto, H. Nishiyama, J. Liu and N. Kato, "Machine learning meets computation and communication control in evolving edge and cloud: Challenges and future perspective", IEEE Commun. Surv. Tut., vol. 22, no. 1, pp. 38–67, Mar. 2020.
[6] Y. Chen, W. Feng and G. Zheng, "Optimum placement of UAV as relays", IEEE Commun. Lett., vol. 22, no. 2, pp. 248–251, Feb. 2018.
[7] Y. Chen, N. Zhao, Z. Ding and M.-S. Alouini, "Multiple UAVs as relays: Multi-hop single link versus multiple dual-hop links", IEEE Trans. Wirel. Commun., vol. 17, no. 9, pp. 6348–6359, Sep. 2018.
[8] R. I. Bor-Yaliniz, A. El-Keyi and H. Yanikomeroglu, "Efficient 3-D placement of an aerial base station in next generation cellular networks", Proc. IEEE Int. Conf. Commun., pp. 1–5, 2016.
[9] X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, "Wireless charging technologies: Fundamentals standards and network applications", IEEE Commun. Surv. Tut., vol. 18, no. 2, pp. 1413–1452, 2016.
[10] M. Lu, M. Bagheri, A. P. James and T. Phung, "Wireless charging techniques for UAVs: A review reconceptualization and extension", IEEE Access, vol. 6, pp. 29865–29884, 2018.
[11] J. Xu, Y. Zeng and R. Zhang, "UAV-enabled wireless power transfer: Trajectory design and energy region characterization", Proc. IEEE Globecom Workshops, pp. 1–7, 2017.
[12] M. Liu, G. Gui, N. Zhao, J. Sun, H. Gacanin and H. Sari, "UAV-aided air-to-ground cooperative nonorthogonal multiple access", IEEE Internet Things J., vol. 7, no. 4, pp. 2704–2715, Apr. 2020.
[13] J. Xu, Y. Zeng and R. Zhang, "UAV-enabled multiuser wireless power transfer: Trajectory design and energy optimization", Proc. 23rd Asia-Pacific Conf. Commun., pp. 1–6, 2017.
[14] J. Xu, Y. Zeng and R. Zhang, "UAV-enabled wireless power transfer: Trajectory design and energy optimization", IEEE Trans. Wirel. Commun., vol. 17, no. 8, pp. 5092–5106, Aug. 2018.
[15] W. Feng et al., "Joint 3D trajectory design and time allocation for UAV-enabled wireless power transfer networks", IEEE Trans. Veh. Technol., pp. 1, Feb. 2020.
[16] G. Zhang, Q. Wu, M. Cui, and R. Zhang, “Securing UAV communications via joint trajectory and power control,” IEEE Trans. Wireless Commun., vol. 18, no. 2, pp. 1376–1389, Feb. 2019.
[17] W. Mei, Q. Wu, and R. Zhang, “Cellular-connected UAV: Uplink association, power control and interference coordination,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5380–5393, Nov. 2019.
[18] X. Hong, P. Liu, F. Zhou, S. Guo, and Z. Chu, “Resource Allocation for Secure UAV-Assisted SWIPT Systems,” IEEE Access, Vol. 7, pp. 24248–24257, Feb. 2019.
[19] Y. Sun, D. Xu, D. W. K. Ng, L. Dai, and R. Schober, “Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4281–4298, Jun. 2019.
[20] S. Salehi, J. Hassan, A. Bokani, S. A. Hoseini and S. S. Kanhere, “Poster Abstract: A QoS-aware, Energy-efficient Trajectory Optimization for UAV Base Stations using Q-Learning,” in 2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 329–330, 2020.
[21] R. Chen, X. Li, Y. Sun, S. Li, and Z. Sun, “Multi-UAV coverage scheme for average capacity maximization,” IEEE Commun. Lett., vol. 24, no. 3, pp. 653–657, Mar. 2020.
[22] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned aerial vehicles (UAVs) for energy-efficient Internet of Things communications,” IEEE Trans. Wireless Commun., vol. 16, no. 11, pp. 7574–7589, Nov. 2017.
[23] C. Zhan and Y. Zeng, “Aerial-ground cost tradeoff for multi-UAV enabled data collection in wireless sensor networks,” IEEE Trans. Commun., vol. 68, no. 3, pp. 1937–1950, Mar. 2020.
[24] X. Liu, Y. Liu, Y. Chen, and L. Hanzo, “Trajectory design and power control for multi-UAV assisted wireless networks: a machine learning approach,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7957–7969, 2018.
[25] C. H. Liu, X. Ma, X. Gao, and J. Tang, “Distributed energy-efficient multi-uav navigation for long-term communication coverage by deep reinforcement learning,” IEEE Trans. Mobile Comput., vol. 19, no. 6, pp. 1274–1285, Jun. 2020.
[26] Q. Wang, W. Zhang, Y. Liu, and Y. Liu, “Multi-UAV dynamic wireless networking with deep reinforcement learning,” IEEE Commun. Lett., vol. 23, no. 12, pp. 2243–2246, Dec. 2019.
[27] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication design for multi-UAV enabled wireless networks,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 2109–2121, Mar. 2018.
[28] C. Shen, T. Chang, J. Gong, Y. Zeng, and R. Zhang, “Multi-UAV interference coordination via joint trajectory and power control,” IEEE Trans. Signal Process., vol. 68, pp. 843–858, 2020.
[29] S. Shi, Y. Li, S. Gu, T. Huang, and X. Gu, “Time Allocation Optimization and Trajectory Design in UAV-Assisted Energy and Spectrum Harvesting Network”, IEEE Access, vol. 8, pp. 160537–160548, 2020.
[30] Y. Hu, X. Yuan, J. Xu, and A. Schmeink, “Optimal 1D trajectory design for UAV-enabled multiuser wireless power transfer”, IEEE Trans. Commun., vol. 67, no. 8, pp. 5674–5688, Aug. 2019.
[31] L. Xie, J. Xu, and R. Zhang, “Throughput maximization for UAV-enabled wireless powered communication networks”, in Proc. IEEE VTC Spring, pp. 1–7, 2018.
[32] F. Huang, J. Chen, H. Wang, G. Ding, Z. Xue, Y. Yang, and F. Song, “UAV-assisted SWIPT in Internet of Things with power splitting: Trajectory design and power allocation”, IEEE Access, vol. 7, pp. 68260–68270, 2019.
[33] J. Kang and C. Chun, “Joint trajectory design, tx power allocation, and rx power splitting for UAV-enabled multicasting SWIPT systems,” IEEE Systems J., vol. 14, no. 3, pp. 3740–3743, 2020.
[34] X. Yuan, T. Yang, Y. Hu, J. Xu, and A. Schmeink, “Trajectory Design for UAV-Enabled Multiuser Wireless Power Transfer With Nonlinear Energy Harvesting,” IEEE Trans. on Wireless Comm., vol. 20, no. 2, pp. 1105–1121, Oct. 2020.
[35] X. Yuan, Y. Hu, and A. Schmeink, “Joint Design of UAV Trajectory and Directional Antenna Orientation in UAV-Enabled Wireless Power Transfer Networks,” 2021 IEEE International Conference on Comm. Workshops, Jul. 2021.
[36] Y. Hu, X. Yuan, G. Zhang, and A. Schmeink, “Sustainable Wireless Sensor Networks With UAV-Enabled Wireless Power Transfer,” IEEE Trans. on Veh. Technol., vol. 70, no. 8, pp. 8050–8064, Jun. 2021.
[37] S. M. Hashir, A. Mehrabi, M. R. Mili, M. J. Emadi, D. W. Kwan Ng, and I. Krikidi, “Performance Trade-Off in UAV-Aided Wireless-Powered Communication Networks via Multi-Objective Optimization,” IEEE Trans. on Veh. Technol., vol. 70, no. 12, pp. 13430–13435, Oct. 2021.
[38] C. Jeong, S. Ho Chae, “Simultaneous Wireless Information and Power Transfer for Multiuser UAV-Enabled IoT Networks,” IEEE Internet of Things Journal, vol. 8, no. 10, pp. 8044–8055, Dec. 2020.
[39] S. Yin, Y. Zhao, and L. Li, “UAV-assisted cooperative communications with time-sharing SWIPT,” in Proc. IEEE ICC, pp. 1–6, 2018.
[40] S. Yin, Y. Zhao, L. Li, and F. R. Yu, “UAV-assisted cooperative communications with time-sharing information and power transfer”, IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 1554–1567, Feb. 2020.
[41] S. Yin, Y. Zhao, and L. Li, “UAV-assisted cooperative communications with power-splitting SWIPT,” in Proc. IEEE ICCS, pp. 162–167, 2018.
[42] Z. Sun, D. Yang, L. Xiao, L. Cuthbert, F. Wu, and Y. Zhu, “Joint Energy and Trajectory Optimization for UAV-Enabled Relaying Network With Multi-Pair Users”, IEEE Trans. on Cognitive Comm. and Networking, vol. 7, no. 3, pp. 939–954, Dce. 2020.
[43] M. A. Ali, and A. Jamalipour, “Dynamic Aerial Wireless Power Transfer Optimization”, IEEE Trans. on Veh. Technol., vol. 71, no. 4, pp. 4010–4022, Feb. 2022.
[44] D. N. K. Jayakody, T. D. P. Perera, A. Ghrayeb, and M. O. Hasna, “Self-energized UAV-assisted scheme for cooperative wireless relay networks”, IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 578–592, Jan. 2020.
[45] X. Sun, W. Yang, Y. Cai, Z. Xiang, and X. Tang, “Secure transmissions in millimeter wave SWIPT UAV-based relay networks”, IEEE Wireless Commun. Lett., vol. 8, no. 3, pp. 785–788, Jun. 2019.
[46] J. Wang, B. Li, G. Wang, Y. Hu, and A. Schmeink, “Robust Design for UAV-Enabled Multiuser Relaying System With SWIPT”, IEEE Trans. on Green Commun. and Networking, vol. 5, no. 3, pp. 1293–1305, Jun. 2021.
[47] Y. Liu, K. Xiong, Y. Lu, Q. Ni, P. Fan, and K. Ben Letaief, “UAV-Aided Wireless Power Transfer and Data Collection in Rician Fading”, IEEE Journal on Selected Areas in Comm., vol. 39, no. 10, pp. 3097–3113, Jul. 2021.
[48] M. Tatar Mamaghani and Y. Hong, “On the performance of low-altitude UAV-enabled secure AF relaying with cooperative jamming and SWIPT”, IEEE Access, vol. 7, pp. 153060–153073, 2019.
[49] Y. Che, Y. Lai, S. Luo, K. Wu, and L. Duan, “UAV-Aided Information and Energy Transmissions for Cognitive and Sustainable 5G Networks”, IEEE Trans. on Wireless Comm., vol. 20, no. 3, pp. 1668–1683, Nov 2020.
[50] D.-H. Tran, V.-D. Nguyen, S. Chatzinotas, T. X. Vu, and B. Ottersten, “UAV Relay-Assisted Emergency Communications in IoT Networks: Resource Allocation and Trajectory Optimization”, IEEE Trans. on Wireless Comm., vol. 21, no. 3, pp. 1621–1637, Aug 2021.
[51] J. Park, H. Lee, S. Eom, and I. Lee, “UAV-aided wireless powered communication networks: Trajectory optimization and resource allocation for minimum throughput maximization”, IEEE Access, vol. 7, pp. 134978–134991, 2019.
[52] L. Xie, J. Xu, and Y. Zeng, “Common throughput maximization for UAV-enabled interference channel with wireless powered communications,” IEEE Trans. Commun., vol. 8, no. 5, pp. 3197–3212, May 2020.
[53] R. Jiang, K. Xiong, T. Liu, D. Wang, and Z. Zhong, “Coverage probability-constrained maximum throughput in UAV-aided SWIPT networks,” in Proc. ICC Workshops, pp. 1–6, 2020.
[54] K. Yu, X. Yu, and J. Cai, “UAVs Assisted Intelligent Reflecting Surfaces SWIPT System With Statistical CSI,” IEEE Journal of Selected Topic in Signal Proc., vol. 15, no. 5, pp. 1095–1109, Jul 2021.
[55] W. Luo, Y. Shen, B. Yang, S. Wang, and X. Guan, “Joint 3-D Trajectory and Resource Optimization in Multi-UAV-Enabled IoT Networks With Wireless Power Transfer,” IEEE Internet of Things Journal, vol. 8, no. 10, pp. 7833–7848, Nov 2020.
[56] X. Wang and M. C. Gursoy, “Coverage analysis for energy-harvesting UAV-assisted mmWave cellular networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 12, pp. 2832–2850, Dec. 2019.
[57] C. You and R. Zhang, “Hybrid Offline-Online Design for UAV-Enabled Data Harvesting in Probabilistic LoS Channels,” IEEE Trans. Wireless Commun., vol. 19, no. 6, pp. 3753–3768, Jun. 2020.
[58] M. Mozaffari, W. Saad, M. Bennis, Y. Nam and M. Debbah, "A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems,” IEEE Commun. Surveys & Tutorials, vol. 21, no. 3, pp. 2334–2360, Mar. 2019.
[59] Al-Hourani, S. Kandeepan and S. Lardner, “Optimal LAP Altitude for Maximum Coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6, pp.569–572, Dec. 2014.
[60] J. Holis and P. Pechac, “Elevation dependent shadowing model for mobile communications via high altitude platforms in built-up areas,” IEEE Trans. Antennas Propag., vol. 56, no. 4, pp. 1078–1084, 2008.
[61] J. Lu, H. Okada, T. Itoh, R. Maeda, and T. Harada, “Towards the world smallest wireless sensor nodes with low power consumption for ‘Green’ sensor networks,” in Proc. IEEE ICSENS, pp. 1–4, Dec. 2013.
[62] M.-L. Ku, Y. Chen and K. J. Ray Liu, “Data-driven stochastic models and policies for energy harvesting sensor communications,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1505–1520, Aug. 2015.
[63] A. Kumar, K. Singh, and D. Bhattacharya, “Green communication and wireless networking,” in Proc. ICGCE, pp. 49–52, Dec. 2013.
[64] Z. Quan Luo, and W. Yu, “An introduction to convex optimization for communications and signal processing,” IEEE Journal on Selected Areas in Commun., vol. 24, no. 8, pp.1426–1438, Aug. 2006.
[65] A. Liu, Vincent K. N. Lau and B. Kananian, “Stochastic Successive Convex Approximation for Non-Convex Constrained Stochastic Optimization,” IEEE Trans. On Signal Processing., vol. 67, no. 16, pp.4189–4203, Jul. 2019.
[66] L. Ge, P. Dong, H. Zhang, J.-Bo Wang, and B. Kananian, “Joint Beamforming and Trajectory Optimization for Intelligent Reflecting Surfaces-Assisted UAV Communications,” IEEE Access., vol. 8, pp.78702–78712, Apr. 2020.
[67] Yi-X. Zhang, Y.-Chang Jiao, and L. Zhang, “Antenna Array Directivity Maximization With Sidelobe Level Constraints Using Convex Optimization,” IEEE Tans. on Antennas and Propagation., vol. 69, no. 4, pp.2041–2052, Apr. 2021.
[68] P. Pei, S. Fan, W. Wang, and D. Lin, “Online Reentry Trajectory Optimization Using Modified Sequential Convex Programming for Hypersonic Vehicle,” IEEE Access, vol. 9, pp.23511–23525, Feb. 2021.
[69] Q. Lu, G. Cui, R. Liu, and X. Yu, “Beampattern Synthesis via First-Order Iterative Convex Approximation,” IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 8, pp.1493–1497, Jun. 2021.
[70] Y. Sun, P. Babu and Daniel P. Palomar, “Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning,” IEEE Trans. On Signal Processing., vol. 65, no. 3, pp.794–816, Aug. 2016.
[71] A. Altaf Khuwaja, Y. Chen, N. Zhao, M.-Slim Alouini, and P. Dobbins, “A Survey of Channel Modeling for UAV Communications,” IEEE Commun. Surveys & Tutorials, vol. 20, no. 4, pp.2804–2821, Jul. 2018.
[72] Li Bing, “Study on Modeling of Communication Channel of UAV”, In Procedia Computer Science, vol. 107, pp.550–557, 2017.
[73] Y. Zeng, J. Xu and R. Zhang, “Energy Minimization for Wireless Communication With Rotary-Wing UAV,” IEEE Trans. Wireless Commun., vol. 18, no. 4, pp.2329–2345, Mar. 2019.
[74] M. Grant and S. Boyd. (2016). CVX: MATLAB Software for Disciplined Convex Programming. [Online]. Available: http://cvxr.com/cvx
指導教授 古孟霖(Meng-Lin Ku) 審核日期 2022-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明