參考文獻 |
[1] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition", in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998, doi: 10.1109/5.726791.
[2] C. Szegedy et al., "Going deeper with convolutions", in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2015, pp. 1-9, doi: 10.1109/CVPR.2015.7298594.
[3] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition", in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.
[4] K. Simonyan, A. Zisserman. "Very Deep Convolutional Networks for Large-Scale Image Recognition", in 3rd International Conference on Learning Representations (ICLR), 2015, arXiv preprint arXiv:1409.1556, 2014.
[5] F. A. Mohammed Ali, and M. S. Al-Tamimi, "Face mask detection methods and techniques: A review", International Journal of Nonlinear Analysis and Applications, vol. 13, no. 1, pp. 3811-3823, 2022, doi: 10.22075/ijnaa.2022.6166.
[6] N. Jindal, H. Singh, and P. S. Rana, "Face mask detection in COVID-19: a strategic review", Multimed Tools Appl, pp. 1-30, 2022, doi: 10.1007/s11042-022-12999-6.
[7] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. -C. Chen, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510-4520, doi: 10.1109/CVPR.2018.00474.
[8] J. Redmon and A. Farhadi, "Yolov3: An incremental improvement", arXiv preprint arXiv:1804.02767, 2018.
[9] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 06, pp. 1137-1149, 2017, doi: 10.1109/TPAMI.2016.2577031.
[10] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection", in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 779-788, doi: 10.1109/CVPR.2016.91.
[11] W. Liu et al., "SSD: Single shot multibox detector", in Proceedings of the European Conference on Computer Vision (ECCV), 2016, vol. 9905, pp. 21-37, doi: 10.1007/978-3-319-46448-0_2.
[12] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger", in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6517-6525, doi: 10.1109/CVPR.2017.690.
[13] Bochkovskiy, A., Wang, C. Y., and Liao, H. Y. M., "Yolov4: Optimal speed and accuracy of object detection", arXiv preprint arXiv:2004.10934, 2020.
[14] Wang, C. Y., Bochkovskiy, A., and Liao, H. Y. M., "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors", arXiv preprint arXiv:2207.02696, 2022.
[15] Y. Lee, J. -w. Hwang, S. Lee, Y. Bae and J. Park, "An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection,", in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2019, pp. 752-760, doi: 10.1109/CVPRW.2019.00103.
[16] L. Xie et al., "Elan: Towards Generic and Efficient Elastic Training for Deep Learning", in 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), 2020, pp. 78-88, doi: 10.1109/ICDCS47774.2020.00018.
[17] A. Navada, A.N. Ansari, S. Patil and B.A. Sonkamble, "Overview of use of decision tree algorithms in machine learning", in 2011 IEEE Control and System Graduate Research Colloquium, 2011, pp. 37-42, doi: 10.1109/ICSGRC.2011.5991826.
[18] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt and B. Scholkopf, "Support vector machines", in IEEE Intelligent Systems and their Applications, Aug. 1998, vol. 13, no. 4, pp. 18-28, doi: 10.1109/5254.708428.
[19] M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, "A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic", Meas. J. Int. Meas. Confed., vol. 167, pp. 108-288, 2021, doi:10.1016/j.measurement.2020.108288.
[20] S. Yadav, "Deep Learning based Safe Social Distancing and Face Mask Detection in Public Areas for COVID-19 Safety Guidelines Adherence", Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, no. 7, pp. 1368-1375, 2020, doi: 10.22214/ijraset.2020.30560.
[21] M. Jiang, X. Fan, "RetinaMask: a face mask detector", arXiv preprint arXiv:2005.03950, 2020.
[22] M. Ucar, "Face Mask Detection Using YOLOv4", in 4th International Conference on Data Science and Applications (ICONDATA′21), 2021, pp. 411-416.
[23] P. Nagrath et al., "SSDMNV2: A real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2", Sustainable Cities and Society. 2021 Aug;71:102964, doi: 10.1016/j.scs.2021.102964.
[24] P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features", in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2001, pp. I-I, doi: 10.1109/CVPR.2001.990517.
[25] Tommy Huang, "機器/深度學習: 基礎介紹-損失函數(loss function)", [Online]. Available: https://medium.com/chih-sheng-huang821/2dcac5ebb6cb [Accessed 14 July 2022].
[26] G. Shiming et al., "mafa-dataset", [Online]. Available: https://www.kaggle.com/datasets/revanthrex/mafadataset [Accessed 25 March 2022]. |