參考文獻 |
[1] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating collaborative filtering recommender systems,” ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 5–53, Jan. 2004, doi: 10.1145/963770.963772.
[2] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734–749, Jun. 2005, doi: 10.1109/TKDE.2005.99.
[3] A. Boutet, D. Frey, R. Guerraoui, A. Jégou, and A.-M. Kermarrec, “WHATSUP: A Decentralized Instant News Recommender,” in 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, May 2013, pp. 741–752. doi: 10.1109/IPDPS.2013.47.
[4] A. Karatzoglou, L. Baltrunas, K. Church, and M. Böhmer, Climbing the app wall: Enabling mobile app discovery through context-aware recommendations. 2012, p. 2530. doi: 10.1145/2396761.2398683.
[5] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR: Bayesian Personalized Ranking from Implicit Feedback,” p. 10, 2009.
[6] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering recommendation algorithms,” in Proceedings of the 10th international conference on World Wide Web, New York, NY, USA, Apr. 2001, pp. 285–295. doi: 10.1145/371920.372071.
[7] K. Shi and K. Ali, “GetJar mobile application recommendations with very sparse datasets,” in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’12, Beijing, China, 2012, p. 204. doi: 10.1145/2339530.2339563.
[8] D. Liu and W. Jiang, “Personalized App Recommendation Based on Hierarchical Embedding,” in 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Oct. 2018, pp. 1323–1328. doi: 10.1109/SmartWorld.2018.00230.
[9] H. Yu, X. Xia, X. Zhao, and W. Qiu, “Combining Collaborative Filtering and Topic Modeling for More Accurate Android Mobile App Library Recommendation,” in Proceedings of the 9th Asia-Pacific Symposium on Internetware, New York, NY, USA, Sep. 2017, pp. 1–6. doi: 10.1145/3131704.3131721.
[10] X. Wu and Y. Zhu, “A Hybrid Approach Based on Collaborative Filtering to Recommending Mobile Apps,” in 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS), Dec. 2016, pp. 8–15. doi: 10.1109/ICPADS.2016.0011.
[11] W. Woerndl, C. Schueller, and R. Wojtech, “A Hybrid Recommender System for Context-aware Recommendations of Mobile Applications,” in 2007 IEEE 23rd International Conference on Data Engineering Workshop, Apr. 2007, pp. 871–878. doi: 10.1109/ICDEW.2007.4401078.
[12] E. Costa-Montenegro, A. B. Barragáns-Martínez, and M. Rey-López, “Which App? A recommender system of applications in markets: Implementation of the service for monitoring users’ interaction,” Expert Syst. Appl., vol. 39, no. 10, pp. 9367–9375, Aug. 2012, doi: 10.1016/j.eswa.2012.02.131.
[13] G. Ling, M. Lyu, and I. King, “Ratings meet reviews, a combined approach to recommend,” RecSys 2014 - Proc. 8th ACM Conf. Recomm. Syst., pp. 105–112, Oct. 2014, doi: 10.1145/2645710.2645728.
[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 2016.
[15] C. Guo, Y. Xu, X. Hou, N. Dong, J. Xu, and Q. Ye, “Deep Attentive Factorization Machine for App Recommendation Service,” in 2019 IEEE International Conference on Web Services (ICWS), Jul. 2019, pp. 134–138. doi: 10.1109/ICWS.2019.00032.
[16] K. Niu, H. Jiao, X. Xu, C. Cheng, and C. Wang, “A Novel Learning Approach to Improve Mobile Application Recommendation Diversity,” in 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Nov. 2018, pp. 1300–1307. doi: 10.1109/ICDMW.2018.00185.
[17] H.-T. Cheng et al., “Wide & Deep Learning for Recommender Systems,” ArXiv160607792 Cs Stat, Jun. 2016, Accessed: Mar. 15, 2022. [Online]. Available: http://arxiv.org/abs/1606.07792
[18] P. Li, Z. Wang, Z. Ren, L. Bing, and W. Lam, “Neural Rating Regression with Abstractive Tips Generation for Recommendation,” Proc. 40th Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., pp. 345–354, Aug. 2017, doi: 10.1145/3077136.3080822.
[19] M. U. Khan, R. M. U. Khalid, S. A. Burhan, and M. Nauman, “Machine Learning Based Recommendation System For Android Apps,” in 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Jul. 2021, pp. 1–4. doi: 10.1109/ECAI52376.2021.9515087.
[20] T. Mikolov, I. Sutskever, K. Chen, G. s Corrado, and J. Dean, “Distributed Representations of Words and Phrases and their Compositionality,” Adv. Neural Inf. Process. Syst., vol. 26, Oct. 2013.
[21] J. Pennington, R. Socher, and C. Manning, “GloVe: Global Vectors for Word Representation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, Oct. 2014, pp. 1532–1543. doi: 10.3115/v1/D14-1162.
[22] M. E. Peters et al., “Deep contextualized word representations,” ArXiv180205365 Cs, Mar. 2018, Accessed: Mar. 15, 2022. [Online]. Available: http://arxiv.org/abs/1802.05365
[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” ArXiv181004805 Cs, May 2019, Accessed: Mar. 15, 2022. [Online]. Available: http://arxiv.org/abs/1810.04805
[24] W. Yin and H. Schütze, “Learning Word Meta-Embeddings,” in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, Aug. 2016, pp. 1351–1360. doi: 10.18653/v1/P16-1128.
[25] J. Turian, L. Ratinov, and Y. Bengio, “Word representations: a simple and general method for semi-supervised learning,” in Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, USA, Jul. 2010, pp. 384–394.
[26] K. Zhang, Z. Lian, J. Li, H. Li, and X. Hu, “Short Text Clustering with a Deep Multi-embedded Self-supervised Model,” in Artificial Neural Networks and Machine Learning – ICANN 2021, Cham, 2021, pp. 150–161. doi: 10.1007/978-3-030-86383-8_12.
[27] Y. Liu et al., “RoBERTa: A Robustly Optimized BERT Pretraining Approach,” ArXiv190711692 Cs, Jul. 2019, Accessed: Mar. 15, 2022. [Online]. Available: http://arxiv.org/abs/1907.11692
[28] M. Gan, Y. Ma, and K. Xiao, “CDMF: A Deep Learning Model based on Convolutional and Dense-layer Matrix Factorization for Context-Aware Recommendation,” 2019. doi: 10.24251/HICSS.2019.138.
[29] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural Collaborative Filtering,” ArXiv170805031 Cs, Aug. 2017, Accessed: Mar. 15, 2022. [Online]. Available: http://arxiv.org/abs/1708.05031
[30] H. Cao, “Mining smartphone data for app usage prediction and recommendations: A survey,” Pervasive Mob. Comput., vol. 37, pp. 1–22, Jan. 2017, doi: 10.1016/j.pmcj.2017.01.007.
[31] Y. Wu et al., “Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation,” ArXiv160908144 Cs, Oct. 2016, Accessed: Mar. 16, 2022. [Online]. Available: http://arxiv.org/abs/1609.08144
[32] H.-J. Xue, X. Dai, J. Zhang, S. Huang, and J. Chen, “Deep Matrix Factorization Models for Recommender Systems,” in Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, Aug. 2017, pp. 3203–3209. doi: 10.24963/ijcai.2017/447.
[33] L. Zheng, V. Noroozi, and P. S. Yu, “Joint Deep Modeling of Users and Items Using Reviews for Recommendation,” ArXiv170104783 Cs, Jan. 2017, Accessed: Mar. 16, 2022. [Online]. Available: http://arxiv.org/abs/1701.04783
[34] R. Catherine and W. Cohen, “TransNets: Learning to Transform for Recommendation,” Proc. Elev. ACM Conf. Recomm. Syst., pp. 288–296, Aug. 2017, doi: 10.1145/3109859.3109878.
[35] A. Mnih and R. R. Salakhutdinov, “Probabilistic Matrix Factorization,” in Advances in Neural Information Processing Systems, 2007, vol. 20. Accessed: Jun. 28, 2022. [Online]. Available: https://proceedings.neurips.cc/paper/2007/hash/d7322ed717dedf1eb4e6e52a37ea7bcd-Abstract.html
[36] Y. Koren, “Factorization meets the neighborhood: a multifaceted collaborative filtering model,” in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, NY, USA, Aug. 2008, pp. 426–434. doi: 10.1145/1401890.1401944.
[37] Y. Koren, R. Bell, and C. Volinsky, “Matrix Factorization Techniques for Recommender Systems,” Computer, vol. 42, no. 8, pp. 30–37, Aug. 2009, doi: 10.1109/MC.2009.263.
[38] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, Art. no. 6755, Oct. 1999, doi: 10.1038/44565.
[39] G. Chen, F. Wang, and C. Zhang, “Collaborative Filtering Using Orthogonal Nonnegative Matrix Tri-factorization,” in Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007), Oct. 2007, pp. 303–308. doi: 10.1109/ICDMW.2007.18.
[40] Q. Gu, J. Zhou, and C. Ding, “Collaborative Filtering: Weighted Nonnegative Matrix Factorization Incorporating User and Item Graphs,” Apr. 2010, pp. 199–210. doi: 10.1137/1.9781611972801.18.
[41] C. Chen, M. Zhang, Y. Liu, and S. Ma, “Neural Attentional Rating Regression with Review-level Explanations,” in Proceedings of the 2018 World Wide Web Conference, Republic and Canton of Geneva, CHE, Apr. 2018, pp. 1583–1592. doi: 10.1145/3178876.3186070.
[42] Y. Tay, A. Luu, and S. Hui, “Multi-Pointer Co-Attention Networks for Recommendation,” Jul. 2018, pp. 2309–2318. doi: 10.1145/3219819.3220086.
[43] D. Liu, J. Li, B. Du, J. Chang, and R. Gao, “DAML: Dual Attention Mutual Learning between Ratings and Reviews for Item Recommendation,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, Jul. 2019, pp. 344–352. doi: 10.1145/3292500.3330906.
[44] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Dec. 2014, doi: 10.48550/arXiv.1412.6980.
[45] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems, 2017, vol. 30. Accessed: Jun. 11, 2022. [Online]. Available: https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html |