博碩士論文 109522045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.142.55.105
姓名 時于凱(Yu-Kai Shih)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 利用機器學習預測濁水溪沖積扇區域之地下水砷汙染
(Using Machine Learning to Predict Groundwater Arsenic Pollution in Choushui Alluvial Fan Area)
相關論文
★ 空氣汙染物與疾病關聯性之研究與利用深度學習預測疾病★ 利用質譜儀資料快速檢測金黃色葡萄球菌之抗藥性
★ 根據質譜儀資料辨識大腸桿菌抗藥性之特徵峰值★ 蛋白質賴氨酸丙二酰化修飾作用位點之預測系統
★ 基於機器學習方法的抗微生物肽活性預測 及特徵分析★ 用於預測抗菌肽多種功能類別的多標籤分類器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 台灣對地下水資源之高度依賴,使得水體品質(簡稱水質)之優劣更為重要。近年來由於台灣濁水溪沖積扇區域嚴重超抽地下水於農業灌溉與養殖漁業,造成水中砷濃度上升,進而影響地下水的用水安全、作物生長甚至對人體健康造成危害,因此,探究並預測地下水砷濃度之變化將有助於強化水資源之使用與管理。目前與地下水砷汙染相關之研究缺乏關注人為抽水之影響,同時,過去研究已指出地下水抽取量可利用抽水馬達用電量推估。因此,本研究使用濁水溪沖積扇區域抽水井之用電資料、觀測井不同含水層水位資料及氣象測站雨量資料作為特徵,同時,採用隨機森林(Random Forest)和人工神經網路(Artificial Neural Network)建構濁水溪沖積扇區域地下水砷濃度預測模型,並探究抽用地下水造成砷濃度變動之關鍵特徵。其中,濁水溪沖積扇砷濃度最高之兩口監測井,彰化縣東興國小與雲林縣台西國小,採用人工神經網路建構之預測模型判定係數(Coefficient of Determination, R2)分別達到 0.723 和 0.705,相關係數(Correlation Coefficient, COR)達 0.999 和 0.989。此外,特徵重要性分析結果顯示,監測井東半邊抽水井之抽水活動,對水中的砷濃度會產生較大的影響,同時,地下水位觀測井之第二含水層與第四含水層之水位變動對於地下水砷濃度預測模型有重要影響。因此,本研究結果顯示利用人工神經網路並使用濁水溪沖積扇區域抽水井之用電資料、觀測井不同含水層水位資料及氣象測站雨量資料作為特徵可有效預測地下水砷濃度。
摘要(英) Taiwan is highly dependent on groundwater resources, making water quality important. In recent years, due to the severe over-pumping of groundwater in the alluvial fan area of Taiwan′s Choushui River for agricultural irrigation and aquaculture, the concentration of arsenic in the water has increased, which in turn affects the water safety of groundwater, the growth of crops and even harms human health. Therefore, investigating and predicting changes in groundwater arsenic concentrations will help strengthen the use and management of water resources. At present, studies related to arsenic pollution of groundwater have not paid attention to the impact of artificial water pumping. At the same time, previous studies have pointed out that groundwater pumping amount can be estimated by using the electricity consumption of pumping motors. This study uses two different machine learning algorithms, Random Forest and Artificial Neural Network, Therefore, this study uses the electricity consumption data of the pumping wells in the Choushui alluvial fan area, the water level data of the observation wells in different aquifers and the rainfall data of the meteorological station as the characteristics. At the same time, two machine learning algorithms, Random Forest and Artificial Neural Network, were used to construct a prediction model of arsenic concentration in groundwater in the Choushui alluvial fan area, and the key characteristics of arsenic concentration changes caused by groundwater pumping were explored. The two monitoring wells with the highest arsenic concentration in the alluvial fan of Choushui is Dongxing Elementary School in Changhua County and Taixi Elementary School in Yunlin County, the Coefficient of Determination (R2) of the prediction model constructed by artificial neural network reached 0.723 and 0.723. And the Correlation Coefficient (COR) reached 0.999 and 0.989. In addition, the results of feature importance analysis show that the pumping activities of the pumping wells in the east half of the monitoring wells will have a greater impact on the arsenic concentration in the water. At the same time, the fluctuation of the water level of the second aquifer and the fourth aquifer in the groundwater level observation well has an important influence on the prediction model of groundwater arsenic concentration. Therefore, the results of this study show that the artificial neural network can effectively predict the arsenic concentration in groundwater using the power consumption data of the pumping wells in the Choushui alluvial fan area, the water level data of the observation wells in different aquifers and the rainfall data of the meteorological station.
關鍵字(中) ★ 砷
★ 地下水
★ 地下水水質
★ 濁水溪沖積扇
★ 機器學習
★ 神經網路
★ 隨機森林
關鍵字(英) ★ Arsenic
★ Groundwater
★ Groundwater quality
★ Choushui Alluvial Fan
★ Machine Learning
★ Artificial Neural Network
★ Random Forest
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 研究背景 1
1-1-1 台灣的水資源 1
1-1-2 台灣地下水中砷濃度的汙染情況及影響 3
1-2 文獻回顧 5
1-3 動機 8
1-4 目的 8
第二章 材料和方法 9
2-1 資料介紹和資料前處理 9
2-1-1 研究區域 9
2-1-2 資料收集 10
2-1-3 資料前處理 11
2-1-4 本研究使用資料整合 24
2-2 機器學習演算法 25
2-3 評估指標 28
第三章 結果 29
3-1 模型評估結果 29
3-2 特徵重要性分析 38
3-3 特徵探討 64
第四章 討論和結論 69
4-1 討論 69
4-2 結論 71
參考文獻 72
附錄 74
參考文獻 1. 楊偉甫, "台灣地區水資源利用現況與未來發展問題". 臺灣水環境再生協會, 用水合理化與新生水水源開發論壇, (2010).
2. 台灣經濟部水利署, "107年各標的用水統計年報". (2018).
3. 王聖瑋, "地下的藍寶石專題報導". 科學發展月刊第 563 期, (2019).
4. 國家環境毒物研究中心, "砷 Arsenic". (2013).
5. 許正一, "土壤重金屬知多少". 科學發展月刊第 468 期, (2011).
6. Liu, C.-W., K.-H. Lin, and Y.-M. Kuo, "Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan". Science of the total environment, (2003). 313(1-3): p. 77-89.
7. Smith, A.H., E.O. Lingas, and M. Rahman, "Contamination of drinking-water by arsenic in Bangladesh: a public health emergency". Bulletin of the World Health Organization, (2000). 78(9): p. 1093-1103.
8. 行政院環保署, "地下水背景砷濃度潛勢範圍及來源判定流程". (2013).
9. Fan, R.A., "結合 HEC-RAS 與 MODFLOW 模式評估濁水溪沖積扇地下水位及地層下陷". Taiwan Water Conservancy, (2019). 67(1): p. 91-102.
10. Zheng, C. and P.P. Wang, "MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide". (1999).
11. 潘柏成, "抽水引致地層下陷造成砷釋出至地下水層之數值模擬與情境分析". (2018).
12. Garg, S. and S. Singh, "Modeling of arsenic transport in groundwater using MODFLOW: A case study". Int. J. Geomatics Geosci, (2016). 7(1): p. 56-81.
13. 高力山 and 張斐章, "應用類神經網路推估區域地下水中砷污染之研究". 農業工程學報, 57, (2011): p. 88-102.
14. 林政華, "以類神經網路探討雲林沿海地區地下水砷濃度與水質特徵". (2012).
15. Liang, C.-P., et al., "A Machine Learning Approach for Spatial Mapping of the Health Risk Associated with Arsenic-Contaminated Groundwater in Taiwan’s Lanyang Plain". International Journal of Environmental Research and Public Health, (2021). 18(21): p. 11385.
16. Park, Y., et al., "Development of enhanced groundwater arsenic prediction model using machine learning approaches in Southeast Asian countries". Desalination and Water Treatment, (2016). 57(26): p. 12227-12236.
17. Smith, R., R. Knight, and S. Fendorf, "Overpumping leads to California groundwater arsenic threat". Nature communications, (2018). 9(1): p. 1-6.
18. Xiao, C., T. Ma, and Y. Du, "Arsenic releasing mechanisms during clayey sediments compaction: An experiment study". Journal of Hydrology, (2021). 597: p. 125743.
19. 歐東坤, "嘉南地區地下水砷濃度之研究". (2005).
20. 馮寶蓮, "地下水井抽水量推估之研究-以台南縣後壁鄉、安定鄉及高雄縣大樹鄉、林園鄉為例", in 環境與安全衛生工程所. (2006), 國立高雄第一科技大學: 高雄市. p. 134.
21. Islam, S., et al., Arsenic accumulation in rice: consequences of rice genotypes and management practices to reduce human health risk. Environment international, 2016. 96: p. 139-155.
22. Pedregosa, F., et al., "Scikit-learn: Machine learning in Python". the Journal of machine Learning research, (2011). 12: p. 2825-2830.
23. 張斐章 and 張麗秋, "類神經網路導論: 原理與應用". (2014): 滄海圖書資訊出版.
24. Winter, E., "The shapley value". Handbook of game theory with economic applications, (2002). 3: p. 2025-2054.
25. 單信瑜, "台灣地下水資源使用與水質現況". (2005).
26. 何薪, "河套平原農業灌溉影響下地下水中砷遷移富集規律研究". (2010), 武漢: 中國地質大學.
指導教授 洪炯宗 吳立青(Jorng-Tzong Horng Li-Ching Wu) 審核日期 2022-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明