博碩士論文 109453010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.142.172.250
姓名 林宗澤(LIN,TSUNG-TSE)  查詢紙本館藏   畢業系所 資訊管理學系在職專班
論文名稱 增量學習用於工業4.0瑕疵檢測
相關論文
★ 台灣50走勢分析:以多重長短期記憶模型架構為基礎之預測★ 以多重遞迴歸神經網路模型為基礎之黃金價格預測分析
★ 遞回歸神經網路於電腦零組件銷售價格預測之研究★ 長短期記憶神經網路於釣魚網站預測之研究
★ 基於深度學習辨識跳頻信號之研究★ Opinion Leader Discovery in Dynamic Social Networks
★ 深度學習模型於工業4.0之機台虛擬量測應用★ A Novel NMF-Based Movie Recommendation with Time Decay
★ 以類別為基礎sequence-to-sequence模型之POI旅遊行程推薦★ A DQN-Based Reinforcement Learning Model for Neural Network Architecture Search
★ Neural Network Architecture Optimization Based on Virtual Reward Reinforcement Learning★ 生成式對抗網路架構搜尋
★ 以漸進式基因演算法實現神經網路架構搜尋最佳化★ Enhanced Model Agnostic Meta Learning with Meta Gradient Memory
★ 遞迴類神經網路結合先期工業廢水指標之股價預測研究★ A Novel Reinforcement Learning Model for Intelligent Investigation on Supply Chain Market
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 自工業 4.0 開始高科技計畫後,世界各國為了保持其優勢皆開始以智慧工廠為目標,
其中自動光學檢測的技術在半導體領域中扮演著重要的角色,自動光學檢測在業界已有
一定程度的發展,各廠商皆已發展出各自的架構,但現行自動光學檢測會因為外在因素
導致有誤判的行為,後續需要進行人工目檢的二次檢查,而在人工目檢時會倚賴製程人
員的專業知識判斷並受到主觀意識的影響,導致人工目檢沒有統一的檢測標準。
故本研究提出以現有架構為基準,以深度學習模型取代現有人工目檢的方式,達到
統一標準的檢測方式,降低對製程人員的依賴程度,且半導體工廠具備多條自動光學檢
測生產線,以傳統方式訓練的模型普遍具有災難性遺忘及模型更新速度耗時的問題,為
改善傳統模型的問題及符合半導體工廠的生態體系,本研究透過增量學習及深度學習模
型的結合提出 Adaptive Aggregation Networks on Gradient Episodic Memory 的系統架構,
以改善傳統模型的災難性遺忘及取代人工目檢為目的,達到提升產品的良率及減少時間
與人力的成本
摘要(英) Since Industry 4.0 started its high-tech project, countries all over the world have started
to aim for smart factories in order to maintain their advantages, among which automatic optical
inspection plays an important role in the semiconductor field. However, the existing automatic
optical inspection may lead to misjudgment due to external factors, and the secondary
inspection by manual visual inspection is required.
Therefore, this study proposes to replace the existing manual visual inspection with a deep
learning model based on the existing framework to achieve a unified standard inspection
method and reduce the dependence on process personnel. In order to improve the problems of
traditional models and to meet the ecological system of semiconductor factories, this study
proposes a system architecture of Adaptive Aggregation Networks on Gradient Episodic
Memory by combining incremental learning and deep learning models to improve the
disastrous forgetfulness of traditional models and to replace manual visual inspection, so as to
improve the product yield and reduce the time and labor cost.
關鍵字(中) ★ 增量學習
★ 瑕疵檢測
★ 深度學習
關鍵字(英)
論文目次 中文摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究貢獻 4
1.4 研究流程與論文架構 5
第二章 文獻探討 7
2.1 自動光學檢測 7
2.2 增量學習 8
第三章 研究方法: 12
3.1 自適應聚合網路梯度情境記憶系統架構 12
3.2 資料前處理Data Preprocessing 13
3.3 Gradient Episodic Memory (GEM) 15
3.4 Adaptive Aggregation Networks (Ada-Aggregate) 18
3.5 研究方法總結 19
第四章 實驗結果 20
4.1 實驗設計 20
4.1.1 實驗環境 20
4.1.2 訓練資料集 21
4.1.3 訓練模型 22
4.1.4 基準模型 23
4.1.5 評估指標 24
4.2 AA-GEM與基準模型效能比較 26
4.2.1 CIFAR-100 資料集 27
4.2.2 MNIST Permutations 資料集 28
4.2.3 MNIST Rotations 資料集 29
4.2.4 Bumping dataset 資料集 30
4.3 Epochs參數對AA-GEM及基準模型的影響 32
4.4 Memory sizes對AA-GEM與基準模型的影響 34
4.5 AA-GEM參數設定的影響實驗 36
4.6 實驗總結與討論 39
第五章 結論 40
5.1 研究限制 40
5.2 研究總結 40
5.3 未來研究方向 41
參考文獻 42
參考文獻 [1] 李昇龍. (2011). 基於增量學習之人臉辨識研究 [國立臺灣師範大學].
[2] 周正全. (2006). 晶圓打線檢測系統之研究 [國立交通大學].
[3] 邵文豪. (2006). 應用影像處理技術與類神經網路於TFT-LCD瑕疵辨識 [華梵大學].
[4] 范姜皓. (2019). AOI瑕疵影像深度學習卷積神經網路分類模型之研究 [國立臺灣科技大學].
[5] 張力. (2020). 人工智慧異常檢測輔助系統開發之研究 [國立臺灣師範大學].
[6] 張上淵. (2002). 應用電腦視覺與類神經網路於BGA檢測系統 [國立交通大學].
[7] 梁俊傑. (2002). DVD與VCD光碟表面瑕疵檢測系統之開發 [國立屏東科技大學].
[8] 莊育明. (2009). 以模糊集合理論改善支持向量機之增量學習演算法 [國立中山大學].
[9] 許辰合. (2002). 印刷電路板基本元件圖像之萃取系統 [國立成功大學].
[10] 陳彥仲. (2002). SMDPCB錫瑕疵與電阻缺錯件自動視覺檢測系統 [國立交通大學].
[11] 陳殿善. (2021). 針對類別增量學習的多錨點知識蒸餾和連續動態調整之特徵邊距 [國立陽明交通大學].
[12] 彭光裕. (2000). 應用電腦視覺技術於表面黏著元件印刷電路板之自動檢測新系統設計及開發 [國立交通大學].
[13] 費浩杰. (2022). 適合增量學習的高效邊緣模型部署研究 [國立臺灣大學].
[14] 黃國書. (2010). 晶粒圖紋瑕疵之自動檢測 [國立交通大學].
[15] 楊琮華. (2002). 電腦視覺輔助印刷電路板表面插件瑕疵檢測系統之開發 [國立屏東科技大學].
[16] 雷承勲. (2020). 設計高效且簡明的目標函數以提升增量學習之效能 [國立交通大學].
[17] 劉晉廷. (2021). 應用AOI檢測技術於連接器自動化設備 [國立高雄科技大學].
[18] 蔡陳杰. (2021). 以Centernet為基礎開發AOI補助系統之研究. 國立台灣師範大學.
[19] 鄭睿夫. (2002). 影像處理技術於載帶規範檢測之應用 [國立成功大學].
[20] 賴怡青. (2006). 整合ANN與SVM於金凸塊表面瑕疵分類之研究 [國立高雄師範大學].
[21] Aljundi, R., Chakravarty, P., & Tuytelaars, T. (2017). Expert gate: Lifelong learning with a network of experts. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3366-3375).
[22] Bertinetto, L., Henriques, J. F., Valmadre, J., Torr, P., & Vedaldi, A. (2016). Learning feed-forward one-shot learners. Advances in neural information processing systems, 29.
[23] Castro, F. M., Marín-Jiménez, M. J., Guil, N., Schmid, C., & Alahari, K. (2018). End-to-end incremental learning. In Proceedings of the European conference on computer vision (ECCV) (pp. 233-248).
[24] Chaudhry, A., Ranzato, M. A., Rohrbach, M., & Elhoseiny, M. (2018). Efficient lifelong learning with a-gem. arXiv preprint arXiv:1812.00420.
[25] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., & Darrell, T. (2014, January). Decaf: A deep convolutional activation feature for generic visual recognition. In International conference on machine learning (pp. 647-655). PMLR.
[26] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
[27] Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., ... & Hadsell, R. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114(13), 3521-3526.
[28] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
[29] Li, Z., & Hoiem, D. (2017). Learning without forgetting. IEEE transactions on pattern analysis and machine intelligence, 40(12), 2935-2947.
[30] Liu, Y., Su, Y., Liu, A. A., Schiele, B., & Sun, Q. (2020). Mnemonics training: Multi-class incremental learning without forgetting. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (pp. 12245-12254).
[31] Lopez-Paz, D., & Ranzato, M. A. (2017). Gradient episodic memory for continual learning. Advances in neural information processing systems, 30.
[32] Rebuffi, S. A., Kolesnikov, A., Sperl, G., & Lampert, C. H. (2017). icarl: Incremental classifier and representation learning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 2001-2010).
[33] Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., & Tesauro, G. (2018). Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv preprint arXiv:1810.11910.
[34] Ruvolo, P., & Eaton, E. (2013, February). ELLA: An efficient lifelong learning algorithm. In International conference on machine learning (pp. 507-515). PMLR.
[35] Sun, Q., Liu, Y., Chen, Z., Chua, T. S., & Schiele, B. (2020). Meta-transfer learning through hard tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence.
[36] Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., & Gong, Y. (2020). Few-shot class-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12183-12192).
[37] Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., & Fu, Y. (2019). Large scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 374-382).
[38] Xavier Glorot, and Yoshua Bengio, “Understanding the Difficulty of Training Deep Feedforward Neural Networks”, International Conference on Artificial Intelligence and Statistics (AISTATS), 2010.
[39] Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1492-1500).
[40] Yang, J., Li, S., Wang, Z., & Yang, G. (2019). Real-time tiny part defect detection system in manufacturing using deep learning. IEEE Access, 7, 89278-89291.
[41] Zadrozny, B. (2004, July). Learning and evaluating classifiers under sample selection bias. In Proceedings of the twenty-first international conference on Machine learning (p. 114).
[42] Zhao, B., Xiao, X., Gan, G., Zhang, B., & Xia, S. T. (2020). Maintaining discrimination and fairness in class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 13208-13217).
指導教授 陳以錚 審核日期 2022-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明