參考文獻 |
[1] Verizon 2021 Data Breach Investigations Report (DBIR). (2021). (https://www.verizon.com/business/resources/reports/2021/2021-data-breach-investigations-report.pdf)
[2] APWG. (2021). PHISHING ACTIVITY TRENDS REPORT. (https://docs.apwg.org/reports/apwg_trends_report_q4_2021.pdf)
[3] Check Point. (2022). Cyber Attack Trends In The Midst Of Warfare – The numbers behind the first days of the conflict. (https://blog.checkpoint.com/2022/02/27/196-increase-in-cyber-attacks-on-ukraines-government-and-military-sector/)
[4] Mohammad, R. M., Thabtah, F., & McCluskey, L. (2015). Phishing websites features. School of Computing and Engineering, University of Huddersfield.
[5] Rao, R. S., & Pais, A. R. (2019). Detection of phishing websites using an efficient feature-based machine learning framework. Neural Computing and Applications, 31(8), 3851-3873.
[6] WHOIS, (https://www.whois365.com/tw/)
[7] Google safe browsing api, (https://transparencyreport.google.com/safe-browsing/overview)
[8] Sheng, S., Wardman, B., Warner, G., Cranor, L., Hong, J., & Zhang, C. (2009). An empirical analysis of phishing blacklists.
[9] Zhang, Y., Hong, J. I., & Cranor, L. F. (2007, May). Cantina: a content-based approach to detecting phishing web sites. In Proceedings of the 16th international conference on World Wide Web (pp. 639-648).
[10] Xiang, G., Hong, J., Rose, C. P., & Cranor, L. (2011). Cantina+ a feature-rich machine learning framework for detecting phishing web sites. ACM Transactions on Information and System Security (TISSEC), 14(2), 1-28..
[11] Almseidin, M., Alkasassbeh, M., Alzubi, M., & Al-Sawwa, J. (2022). Cyber-Phishing Website Detection Using Fuzzy Rule Interpolation. Cryptography, 6(2), 24.
[12] Mao, J., Tian, W., Li, P., Wei, T., & Liang, Z. (2017). Phishing-alarm: robust and efficient phishing detection via page component similarity. IEEE Access, 5, 17020-17030..
[13] 黃冠龍,(2019), 特定企業之視覺化釣魚網站偵測, 國立台灣科技大學電機工程系碩士學位論文.
[14] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
[15] Moghimi, M., & Varjani, A. Y. (2016). New rule-based phishing detection method. Expert systems with applications, 53, 231-242.
[16] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
[17] Fang, Y., Long, X., Huang, C., & Liu, L. (2018). Research on Classifying Phishing URLs Using Hybrid Architecture of LSTM and Random Forest. Gongcheng Kexue Yu Jishu/Advanced Engineering Science, 50(September 2018), 196-201.
[18] Al-Daeef, M. M., Basir, N., & Saudi, M. M. (2021). URL’s Folder Name Length as a Phishing Detection Feature. In Proceedings of Fifth International Congress on Information and Communication Technology (pp. 326-333). Springer, Singapore.
[19] APWG. (2021). APWG Q2 Cybercrime Report: Phishing Sustains Elevated ′New Normal′ Attack Volume Into the Middle of 2021, (http://docs.apwg.org/reports/apwg_trends_report_q2_2021.pdf).
[20] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
[21] Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. , 31(3), 685-695.
[22] PhishTank, (https://www.phishtank.com/)
[23] Marchal, S., François, J., State, R., & Engel, T. (2014). PhishStorm: Detecting phishing with streaming analytics. IEEE Transactions on Network and Service Management, 11(4), 458-471.
[24] The Canadian Institute for Cybersecurity. (2016). ISCX-URL 2016, University of New Brunswick.
[25] 施淳譯. (2020). 基於類神經網路之釣魚網站辨識系統.
[26] Aburrous, M., Hossain, M. A., Dahal, K., & Thabtah, F. (2010). Intelligent phishing detection system for e-banking using fuzzy data mining. Expert systems with applications, 37(12), 7913-7921.
[27] Paliwal, S., Anand, D., & Khan, S. (2016). Application of Rule based Fuzzy Inference System in Prediction of Internet Phishing. International Journal of Computer Applications, 148(14).
[28] Pan, Y., & Ding, X. (2006, December). Anomaly based web phishing page detection. In 2006 22nd Annual Computer Security Applications Conference (ACSAC′06) (pp. 381-392). IEEE.
[29] Whittaker, C., Ryner, B., & Nazif, M. (2010). Large-scale automatic classification of phishing pages.
[30] He, M., Horng, S. J., Fan, P., Khan, M. K., Run, R. S., Lai, J. L., ... & Sutanto, A. (2011). An efficient phishing webpage detector. Expert systems with applications, 38(10), 12018-12027.
[31] Aggarwal, A., Rajadesingan, A., & Kumaraguru, P. (2012, October). PhishAri: Automatic realtime phishing detection on twitter. In 2012 eCrime Researchers Summit (pp. 1-12). IEEE.
[32] Zhang, D., Yan, Z., Jiang, H., & Kim, T. (2014). A domain-feature enhanced classification model for the detection of Chinese phishing e-Business websites. Information & Management, 51(7), 845-853..
[33] Gowtham, R., & Krishnamurthi, I. (2014). A comprehensive and efficacious architecture for detecting phishing webpages. Computers & Security, 40, 23-37.
[34] Mohammad, R. M., Thabtah, F., & McCluskey, L. (2014). Predicting phishing websites based on self-structuring neural network. Neural Computing and Applications, 25(2), 443-458..
[35] Sahingoz, O. K., Buber, E., Demir, O., & Diri, B. (2019). Machine learning based phishing detection from URLs. Expert Systems with Applications, 117, 345-357.
[36] Jeeva, S. C., & Rajsingh, E. B. (2016). Intelligent phishing url detection using association rule mining. Human-centric Computing and Information Sciences, 6(1), 1-19.
[37] Brandon Rohrer. (2017). How Recurrent Neural Networks and Long Short-Term Memory Work, (https://e2eml.school/how_rnns_lstm_work.html).
[38] Wang, X., Liu, Y., Sun, C. J., Wang, B., & Wang, X. (2015, July). Predicting polarities of tweets by composing word embeddings with long short-term memory. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 1343-1353).
[39] BiObserver, CC BY-SA 4.0, WIKI
(https://commons.wikimedia.org/w/index.php?curid=43992484)
[40] 洪慕藍. (2019). 以機器學習演算法探討網路釣魚網站之特徵值. 南臺科技大學資訊管理系碩士學位論文.
[41] Zhang, X., Yan, Z., Li, H., & Geng, G. (2017). Research of phishing detection technology. Chinese Journal of Network and Information Security, 3(7), 7-24. |