參考文獻 |
AKÇAY, M. T., AKGUNDOGDU, A., & TİRYAKİ, H. (2022). Prediction of travel time for railway traffic management by using the AdaBoost algorithm. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 300-312.
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
Dai, X., Sun, L., & Xu, Y. (2018). Short-term origin-destination based metro flow prediction with probabilistic model selection approach. Journal of Advanced Transportation, 2018.
Guo, J., Xie, Z., Qin, Y., Jia, L., & Wang, Y. (2019). Short-term abnormal passenger flow prediction based on the fusion of SVR and LSTM. IEEE Access, 7, 42946-42955.
He, K., Ren, G., & Zhang, S. (2020). Passenger Flow Prediction for Urban Rail Transit Stations Considering Weather Conditions. In Green, Smart and Connected Transportation Systems (pp. 661-673). Springer.
Huiting, H., Junfeng, Z., Ge, M., Hongye, W., & Xinghua, S. (2020). Research on Forecast of Passenger Flow of High Speed Railway in Competitive Market Based on XGBoost Model. 2020 13th International Symposium on Computational Intelligence and Design (ISCID),
Jou, R.-C., Hensher, D. A., & Hsu, T.-L. (2011). Airport ground access mode choice behavior after the introduction of a new mode: A case study of Taoyuan International Airport in Taiwan. Transportation Research Part E: Logistics and Transportation Review, 47(3), 371-381.
Li, X., Gao, Y., Zhang, H., & Liao, Y. (2020). Passenger Travel Behavior in Public Transport Corridor After the Operation of Urban Rail Transit: A Random Forest Algorithm Approach. IEEE Access, 8, 211303-211314.
Lin, S., & Tian, H. (2020). Short-term metro passenger flow prediction based on random forest and LSTM. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC),
Liu, L., Chen, R.-C., Zhao, Q., & Zhu, S. (2019). Applying a multistage of input feature combination to random forest for improving MRT passenger flow prediction. Journal of Ambient Intelligence and Humanized Computing, 10(11), 4515-4532.
Liu, L., Chen, R.-C., & Zhu, S. (2018). Passenger flow prediction using weather data for metro systems. 2018 conference on technologies and applications of artificial intelligence (TAAI),
Liu, L., Chen, R.-C., & Zhu, S. (2020). Impacts of weather on short-term metro passenger flow forecasting using a deep LSTM neural network. Applied Sciences, 10(8), 2962.
Milenković, M., Švadlenka, L., Melichar, V., Bojović, N., & Avramović, Z. (2018). SARIMA modelling approach for railway passenger flow forecasting. Transport, 33(5), 1113-1120. https://doi.org/10.3846/16484142.2016.1139623
Pasini, K., Khouadjia, M., Ganansia, F., & Oukhellou, L. (2019). Forecasting passenger load in a transit network using data driven models. WCRR 2019, 12th World Congress on Railway Research,
Sangsoo Lee, D. B. F. (1999). Application of Subset Autoregressive Integrated Moving Average Model for Short-Term Freeway Traffic Volume Forecasting. Transportation Research Record Journal of the Transportation Research Board, 1678(1), 179-188 - January 1999. https://doi.org/10.3141/1678-22
Sha, S., Li, J., Zhang, K., Yang, Z., Wei, Z., Li, X., & Zhu, X. (2020). RNN-based subway passenger flow rolling prediction. IEEE Access, 8, 15232-15240.
Tin Kam, H. (1995, 14-16 Aug. 1995). Random decision forests. Proceedings of 3rd International Conference on Document Analysis and Recognition,
Zhang, D., Sui, J., & Gong, Y. (2017). Generiranje ispitnih podataka za softver zasnovano na kolektivnom ograničenju i ponderiranoj metodi kombinacije. Tehnički vjesnik, 24(4), 1041-1049.
Zhou, W., Wang, W., & Zhao, D. (2020). Passenger flow forecasting in metro transfer station based on the combination of singular spectrum analysis and adaboost-weighted extreme learning machine. Sensors, 20(12), 3555.
Zou, L., Shu, S., Lin, X., Lin, K., Zhu, J., & Li, L. (2022). Passenger Flow Prediction Using Smart Card Data from Connected Bus System Based on Interpretable XGBoost. Wireless Communications and Mobile Computing, 2022.
李文勳. (2020). 天氣預測對捷運搭乘者影響之研究.
林志玟. (2020). 應用深度學習建構臺北捷運客運量預測模型之研究 輔仁大學]. 新北市. https://hdl.handle.net/11296/x6dazw
柳建舟. (2014). 捷運系統旅次特性探討與影響捷運旅客運量因素之實證分析-以高雄捷運為例 國立高雄應用科技大學]. 高雄市. https://hdl.handle.net/11296/p39qjj
段志奇. (2021). 應用長短期記憶模型與迴歸分析於鐵道運輸載客量預測分析- 以台北捷運為例 國立宜蘭大學]. 宜蘭縣. https://hdl.handle.net/11296/732742
陳淑惠. (2020). 以監督式學習探討北捷旅運量 嶺東科技大學]. 台中市. https://hdl.handle.net/11296/wz8w38
黃志偉. (2015). 運用人工神經網路探討短期高雄捷運班次之運能 國立成功大學]. 台南市. https://hdl.handle.net/11296/75c572
葉奕新. (2017). 臺北捷運系統之人潮移動分析. 中國統計學報, 55(2), 69-95.
劉祐瑋. (2021). 含有離異點時間序列模型對於臺北捷運的人流量預測 國立宜蘭大學]. 宜蘭縣. https://hdl.handle.net/11296/9uyj62 |