參考文獻 |
陳明賢. (1986). 財務危機預測之計量分析研究 [國立臺灣大學]. 收入 商學研究所: 卷 碩士. https://hdl.handle.net/11296/q8e8m9
陳肇榮. (1983). 運用財務比率預測企業財務危機之實證研究 [國立政治大學]. 收入 企業管理研究所: 卷 博士. https://hdl.handle.net/11296/muxs4m
高惠松, 李建然, 陳樹衡, Kao, H.-S., Lee, J.-Z., & Chen, S.-H. (2012). 不同公司治理情境之股權評價:類神經模糊專家系統之應用. 管理與系統, 19(3), 373–408.
郭啟賢(Chii-Shyan Kuo), 張鳳真(Feng-Chen Chang), 張芸瑄(Zoey Chang), & 余士迪(Shih-Ti Yu). (2021). 我國銀行業盈餘與資本適足比率之調配. 應用經濟論叢, 109, 169–213. https://doi.org/10.3966/054696002021060109005
簡文樂. (2019). 香港上市公司財務危機預警模型之建立與應用 [國立政治大學]. 收入 政治大學會計學系學位論文 (期 2019年, 頁 57). https://doi.org/10.6814/NCCU201900787
簡禎富, 彭金堂, 許嘉裕, Chien, C.-F., Peng, J.-T., & Hsu, C.-Y. (2013). 產學合作模式之研究-以科學工業園區固本精進產學合作計畫為例. 管理與系統, 20(1), 27–54.
賴擁連(Yung-Lien Lai), 吳慧菁(Hui-Ching Wu), & 蔡田木(Tien-Muh Tsai). (2021). 女性毒品收容人釋放後生活關注議題以及尋求協助需求之初探. 藥物濫用防治, 6(2), 37–60. https://doi.org/10.6645/JSAR.202106_6(2).3
李建然(Jan-Zan Lee), 廖秀梅(Hsiu-Mei Liao), & 馬心屏(Hsin-Ping Ma). (2022). 影響上市櫃公司於公開資訊觀測站自願申報自結損益的決定因素. 臺大管理論叢, 32(1), 127–152. https://doi.org/10.6226/NTUMR.202204_32(1).0004
李沃牆. (2020). 全球疫情不止 經濟復甦疑慮多. 會計研究月刊, 417, 16–20. https://doi.org/10.6650/ARM.202008_(417).0003
林冠廷. (2018). 財務危機預警模型實證研究─考慮表外風險因素 [國立臺灣大學]. 收入 臺灣大學國際企業學研究所學位論文 (期 2018年, 頁 51). https://doi.org/10.6342/NTU201802803
林左裕(Calvin Tso-Yu Lin), 鄭瑞昌(Jui-Chang Cheng), 柯俊禎(James J. C. Ko), & 陳毓芬(Yu-Fen Chen). (2013). 公司治理與財務危機關聯性之研究. 評價學報, 6, 1–26.
潘玉葉. (1990). 臺灣股票上市公司財務危機預警分析 [淡江大學]. 收入 管理科學研究所: 卷 博士. https://hdl.handle.net/11296/2g724a
邱皓政(Haw-Jeng Chiou). (2017). 多元迴歸的自變數比較與多元共線性之影響:效果量、優勢性與相對權數指標的估計與應用. 臺大管理論叢, 27(3), 65–108. https://doi.org/10.6226/NTUMR.2017.JAN.A103-022
巫沛倉(Pei-Tsang Wu), 廖紫柔(Tzu-Jou Liao), & 邱詩彥(Shi-Yan Qiu). (2021). 運用灰關聯分析與倒傳遞類神經網路建構財務危機預警模型. 管理資訊計算, 10(1), 121–132. https://doi.org/10.6285/MIC.202103_10(1).0012
許溪南(Hsinan Hsu), 歐陽豪(Ou-Yang Hou), & 陳慶芳(Ching-Fang Chen). (2007). 公司治理、盈餘管理與財務預警模型之建構. 會計與公司治理, 4(1), 85–121. https://doi.org/10.30139/JACG.200706.0004
余惠芳(Hui-Fun Yu), 蘇明達(Ming-Da Su), & 李巧妤(Qiao-Yu Li). (2020). 融資決策、股利政策與營運績效之研究:中國上市公司之實證. 全球管理與經濟, 16(2), 65–80. https://doi.org/10.6565/JGME.202012_16(2).0005
張書瑋. (2020). 疫情下的企業財務危機求生術. 會計研究月刊, 416, 60–64. https://doi.org/10.6650/ARM.202007_(416).0009
鄭碧月. (1997). 上市公司營運危機預測模式之研究 [朝陽技術學院]. 收入 財務金融系所研究所: 卷 碩士. https://hdl.handle.net/11296/e32gpk
卓一誠. (2008). 運用倒傳遞類神經網路建構電子業財務危機預警模型 [國立交通大學]. 收入 管理學院碩士在職專班資訊管理組: 卷 碩士. https://hdl.handle.net/11296/qk2e3u
Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589–609. https://doi.org/10.2307/2978933
Altman, E. I. (2013). Predicting financial distress of companies: Revisiting the Z-Score and ZETA® models. Handbook of Research Methods and Applications in Empirical Finance, 428–456.
Altman, E. I., Haldeman, R. G., & Narayanan, P. (1977). ZETATM analysis A new model to identify bankruptcy risk of corporations. Journal of Banking & Finance, 1(1), 29–54. https://doi.org/10.1016/0378-4266(77)90017-6
Altman, E. I., Iwanicz-Drozdowska, M., Laitinen, E. K., & Suvas, A. (2015). Financial and Non-Financial Variables as Long-Horizon Predictors of Bankruptcy (SSRN Scholarly Paper 期 2669668). Social Science Research Network. https://doi.org/10.2139/ssrn.2669668
Ansari, A., Ahmad, I. S., Bakar, A. A., & Yaakub, M. R. (2020). A Hybrid Metaheuristic Method in Training Artificial Neural Network for Bankruptcy Prediction. IEEE Access, 8, 176640–176650. https://doi.org/10.1109/ACCESS.2020.3026529
Atiya, A. F. (2001). Bankruptcy prediction for credit risk using neural networks: A survey and new results. IEEE Transactions on Neural Networks, 12(4), 929–935. https://doi.org/10.1109/72.935101
Beaver, W. H. (1966). Financial Ratios As Predictors of Failure. Journal of Accounting Research, 4, 71–111. https://doi.org/10.2307/2490171
Berkson, J. (1944). Application of the Logistic Function to Bio-Assay. Journal of the American Statistical Association, 39(227), 357–365. https://doi.org/10.1080/01621459.1944.10500699
Blum, M. (1974). Failing Company Discriminant Analysis. Journal of Accounting Research, 12(1), 1–25. https://doi.org/10.2307/2490525
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Brown, L. W., De Leon, J. A., & Rasheed, A. A. (2019). Corporate Political Activity and Free Riding under Market Uncertainty: An Investigation of TARP Funding. Business and Society Review, 124(1), 115–143. https://doi.org/10.1111/basr.12165
Burges, C. J. C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2), 121–167. https://doi.org/10.1023/A:1009715923555
Chen, J., Chollete, L., & Ray, R. (2010). Financial distress and idiosyncratic volatility: An empirical investigation. Journal of Financial Markets, 13(2), 249–267. https://doi.org/10.1016/j.finmar.2009.10.003
Chen, M.-Y. (2011). Bankruptcy prediction in firms with statistical and intelligent techniques and a comparison of evolutionary computation approaches. Computers & Mathematics with Applications, 62(12), 4514–4524. https://doi.org/10.1016/j.camwa.2011.10.030
Coats, P. K., & Fant, L. F. (1991). A Neural Network Approach to Forecasting Financial Distress. The Journal of Business Forecasting Methods & Systems, 10(4), 9. ABI/INFORM Collection; Accounting, Tax & Banking Collection; Healthcare Administration Database.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27. https://doi.org/10.1109/TIT.1967.1053964
David W. Hosmer, Stanley Lemeshow. (2000). Applied Logistic Regression. 收入 Applied Logistic Regression (頁 i–xii). John Wiley & Sons, Ltd. https://doi.org/10.1002/0471722146.fmatter
Deakin, E. B. (1972). A Discriminant Analysis of Predictors of Business Failure. Journal of Accounting Research, 10(1), 167–179. https://doi.org/10.2307/2490225
Delen, D., Sharda, R., & Bessonov, M. (2006). Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accident Analysis & Prevention, 38(3), 434–444. https://doi.org/10.1016/j.aap.2005.06.024
Demyanyk, Y., & Van Hemert, O. (2008). Understanding the Subprime Mortgage Crisis (SSRN Scholarly Paper 期 1020396). Social Science Research Network. https://doi.org/10.2139/ssrn.1020396
Fernández, A., García, S., del Jesus, M. J., & Herrera, F. (2008). A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets. Fuzzy Sets and Systems, 159(18), 2378–2398. https://doi.org/10.1016/j.fss.2007.12.023
Freund, Y., & Schapire, R. E. (1999). A Short Introduction to Boosting. 14.
Hanley, J.A., McNeil, B.J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. | Radiology. https://pubs.rsna.org/doi/abs/10.1148/radiology.143.1.7063747
Hopwood, W., McKEOWN, J. C., & Mutchler, J. F. (1994). A Reexamination of Auditor versus Model Accuracy within the Context of the Going-Concern Opinion Decision*. Contemporary Accounting Research, 10(2), 409–431. https://doi.org/10.1111/j.1911-3846.1994.tb00400.x
Lin, W.-Y., Hu, Y.-H., & Tsai, C.-F. (2012). Machine Learning in Financial Crisis Prediction: A Survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 421–436. https://doi.org/10.1109/TSMCC.2011.2170420
Odom, M. D., & Sharda, R. (1990). A neural network model for bankruptcy prediction. 1990 IJCNN International Joint Conference on Neural Networks, 163–168 卷2. https://doi.org/10.1109/IJCNN.1990.137710
Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18(1), 109–131. https://doi.org/10.2307/2490395
Perboli, G., & Arabnezhad, E. (2021). A Machine Learning-based DSS for mid and long-term company crisis prediction. Expert Systems with Applications, 174, 114758. https://doi.org/10.1016/j.eswa.2021.114758
Pinches, G. E. (1980). Factors influencing classification results from multiple discriminant analysis. Journal of Business Research, 8(4), 429–456. https://doi.org/10.1016/0148-2963(80)90017-X
Sun, X., & Lei, Y. (2021). Research on financial early warning of mining listed companies based on BP neural network model. Resources Policy, 73, 102223. https://doi.org/10.1016/j.resourpol.2021.102223
Tkáč, M., & Verner, R. (2016). Artificial neural networks in business: Two decades of research. Applied Soft Computing, 38, 788–804. https://doi.org/10.1016/j.asoc.2015.09.040
Zeitun, R., Tian, G., & Keen, S. (2007). Macroeconomic determinants of corporate performance and failure: Evidence from an emerging market the case of Jordan. Faculty of Commerce - Papers (Archive), 179–194.
Zmijewski, M. E. (1984). Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research, 22, 59–82. https://doi.org/10.2307/2490859 |