參考文獻 |
[1] Nandi, A. K., & Azzouz, E. E. (1998). Algorithms for automatic modulation recognition of communication signals. IEEE Transactions on communications, 46(4), 431-436.
[2] 林聰岷. (2013). 使用高階統計法則實現相位鍵移調變訊號分類作業.
[3] Dobre, O. A., Bar-Ness, Y., & Su, W. (2003, October). Higher-order cyclic cumulants for high order modulation classification. In IEEE Military Communications Conference, 2003. MILCOM 2003. (Vol. 1, pp. 112-117). IEEE.
[4] Lee, K. G., & Oh, S. J. (2020). Detection of frequency-hopping signals with deep learning. IEEE Communications Letters, 24(5), 1042-1046.
[5] Bracewell, R. N., & Bracewell, R. N. (1986). The Fourier transform and its applications (Vol. 31999, pp. 267-272). New York: McGraw-hill.
[6] 趙俊, 張朝陽, 賴利峰, & 曹千芊. (2003). 一種基於時頻分析的跳頻信號參數盲估計方法. 電路與系統學報, 8(3), 46-50.
[7] 郝威, & 楊露菁. (2004). 跳頻技術的發展及其干擾對策. 艦船電子對抗, 27(4), 7-12.
[8] 跳頻通信:跳頻是最常用的擴頻方式之一,其工作原理是指收發雙方傳輸信號的載 -百科知識中文網(N.d.). https://www.easyatm.com.tw/wiki/%E8%B7%B3%E9%A0%BB%E9%80%9A%E4%BF%A1
[9] 侯范, 姚志成, 楊劍, 李昱婷, & 王自維. (2022). 一種基於K-means 聚類的跳頻信號快速檢測方法. Telecommunication Engineering, 62(2).
[10] Griffin, D., & Lim, J. (1984). Signal estimation from modified short-time Fourier transform. IEEE Transactions on acoustics, speech, and signal processing, 32(2), 236-243.
[11] 劉佳敏, 趙知勁, 曹越飛, 葉學義, & 王李軍. (2021). 基於時頻分析的多跳頻信號盲檢測. Journal of Signal Processing, 37(5).
[12] 李紅光, 郭英, 齊子森, & 蘇令華. (2020). 複雜電磁環境下多跳頻信號盲檢測. 華中科技學報: 自然科學版, 48(7), 13-19.
[13] Recognition of Overlapped Frequency Hopping Signals Based on Fully Convolutional Networks.(Pengcheng Liu et al.2021 )
[14] Book_李宏毅老師機器學習課程筆記 – HackMD (N.d.). https://hackmd.io/@shaoeChen/B1CoXxvmm/https%3A%2F%2Fhackmd.io%2Fs%2FHyKhr5sRz
[15] 國立台灣大學計算機及資訊網路中心電子報(N.d.). https://www.cc.ntu.edu.tw/chinese/epaper/0038/20160920_3805.html
[16] AI - Ch16 機器學習(4), 類神經網路 Neural network (N.d.). https://mropengate.blogspot.com/2015/06/ch15-4-neural-network.html
[17] Liu, P., Han, Z., Shi, Z., & Liu, M. (2021, June). Recognition of overlapped frequency hopping signals based on fully convolutional networks. In 2021 28th International Conference on Telecommunications (ICT) (pp. 1-5). IEEE.
[18] 呂國裴, & 謝躍雷. (2020). 基於深度學習的跳頻信號識別. Telecommunication Engineering, 60(10).
[19] Lee, K. G., & Oh, S. J. (2020). Detection of frequency-hopping signals with deep learning. IEEE Communications Letters, 24(5), 1042-1046.
[20] Li, Z., Liu, R., Lin, X., & Shi, H. (2018, December). Detection of frequency-hopping signals based on deep neural networks. In 2018 IEEE 3rd International Conference on Communication and Information Systems (ICCIS) (pp. 49-52). IEEE.
[21] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510-4520).
[22] 初探卷積神經網路 (N.d.). https://chtseng.wordpress.com/2017/09/12/%E5%88%9D%E6%8E%A2%E5%8D%B7%E7%A9%8D%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF/
[23] Ithome網站資訊 (N.d.).
https://ithelp.ithome.com.tw/articles/10263847 |