博碩士論文 109423071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.145.23.123
姓名 江承祐(Cheng-Yu Chiang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 應用深度學習演算法與時間序列資料建立冠狀動脈疾病預測模型
(Predicting Coronary Artery Disease Using Deep Learning Algorithms and Time Series Data)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 冠狀動脈疾病是影響全球的重要心血管疾病之一,且罹患冠狀動脈疾病的患者人數都有逐漸上升的趨勢,造成許多人死亡。已有研究指出,提早預防或在患病早期接受治療能有效降低死亡率,因此,本研究使用深度學習演算法,包括長短期記憶模型 (Long Short-Term Memory, LSTM)和卷積神經網路 (Convolutional Neural Networks, CNN),並使用長庚醫學研究資料庫從2001年至2018年10月的病患診斷和檢驗資料,建立冠狀動脈疾病時序預測模型。經資料清理後,病例組有8,818位患者 (13.1%);對照組有58,562位患者。以CNN建立之最佳模型,ROC (receiver operating characteristic)曲線下面積為0.945±0.0024。使用診斷和檢驗兩者整合資料建立的模型,效能較單獨使用診斷或檢驗資料建立模型好 (P<0.001)。本研究也使用單一時間點資料建立CNN模型,並和使用時序資料所建立之模型比較,比較結果為使用時序資料建立之模型預測效能較佳 (P<0.001)。本研究結果表明,使用深度學習和時間序列資料建立冠狀動脈疾病預測模型能有效預測病患未來是否發生冠狀動脈疾病。
摘要(英) Coronary artery disease (CAD) is one of the major cardiovascular diseases affecting the global population, causing many deaths each year. Coronary artery disease is on the rise in both developed and developing countries. Studies have shown that early prevention or treatment at an early stage of the disease can effectively reduce mortality. We use deep learning algorithms, including Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN), to develop a CAD prediction model, using data from Chang Gung Research Database from 2001/01/01 to 2018/10/31. A total of 8,818 patients had CAD while 58,562 patients did not. The best performance of CNN model has an Area under the receiver operating characteristic curve (AUC) of 0.945 and a standard deviation of 0.0024. We found that using both diagnosis and lab data has a better performance compared to using only diagnosis or lab data. We also compared the use of time series data and non-time series data in CNN model. The results show that the model using time series data has higher performance. The results of our study show that the use of deep learning and time series data to build a coronary artery disease prediction model can effectively predict whether patients will have coronary artery disease in the future.
關鍵字(中) ★ 冠狀動脈疾病
★ 深度學習
★ 時間序列資料
★ 卷積神經網路
★ 長短期記憶模型
關鍵字(英) ★ Coronary artery disease
★ Deep learning
★ Times series data
★ Convolutional Neural Networks
★ Long Short-Term Memory
論文目次 圖書館學位論文授權書..........................................I
指導教授推薦書...............................................II
論文口試委員審定書..........................................III
中文摘要 VI
Abstract VII
目錄 VIII
圖目錄 X
表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.1.1 冠狀動脈疾病 (Coronary Artery Disease, CAD) 1
1.1.2 機器學習 (Machine Learning, ML) 2
1.1.3 深度學習 (Deep Learning, DL) 2
1.1.4 時間序列 (Time Series) 3
1.2 研究動機與目的 4
第二章 文獻探討 5
2.1 機器學習醫療應用 5
2.2 時間序列分析 8
2.3 CAD(冠狀動脈疾病)預測模型 9
第三章 研究方法 12
3.1 研究資料 12
3.2 LSTM(長短期記憶網路) 22
3.3 CNN(卷積神經網路) 24
3.4 XGBoost(極限梯度提升) 26
3.5 建立預測模型 27
3.6 統計方法 28
第四章 研究結果 29
4.1 資料清理 29
4.2 病患特徵 30
4.3 預測模型效能 32
4.4 重要特徵 54
第五章 討論 57
第六章 結論 59
參考文獻 60
附錄 64
參考文獻 [1] World Health Organization, World health statistics 2020: monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization, 2020. Accessed: Mar. 10, 2022. [Online]. Available: https://apps.who.int/iris/handle/10665/332070
[2] 統計處, “109年國人死因統計結果,” 統計處, Jun. 18, 2021. https://www.mohw.gov.tw/cp-5017-61533-1.html (accessed Jul. 19, 2022).
[3] M. Schaap et al., “Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms,” Med. Image Anal., vol. 13, no. 5, pp. 701–714, Oct. 2009, doi: 10.1016/j.media.2009.06.003.
[4] “Early diagnosis of coronary artery disease,” Total Health. https://www.totalhealth.co.uk/clinical-experts/professor-avijit-lahiri/early-diagnosis-coronary-artery-disease (accessed Mar. 10, 2022).
[5] “Artificial Intelligence & Machine Learning: Policy Paper,” Internet Society. https://www.internetsociety.org/resources/doc/2017/artificial-intelligence-and-machine-learning-policy-paper/ (accessed Feb. 08, 2022).
[6] M. Alloghani, D. Al-Jumeily Obe, J. Mustafina, A. Hussain, and A. Aljaaf, “A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science,” 2020, pp. 3–21. doi: 10.1007/978-3-030-22475-2_1.
[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, Art. no. 7553, May 2015, doi: 10.1038/nature14539.
[8] J. L. McClelland and M. M. Botvinick, “Deep Learning: Implications for Human Learning and Memory,” PsyArXiv, preprint, Nov. 2020. doi: 10.31234/osf.io/3m5sb.
[9] H. Kim, J.-T. Lee, K. C. Fong, and M. L. Bell, “Alternative adjustment for seasonality and long-term time-trend in time-series analysis for long-term environmental exposures and disease counts,” BMC Med. Res. Methodol., vol. 21, no. 1, p. 2, Jan. 2021, doi: 10.1186/s12874-020-01199-1.
[10] R. D. Shahjehan and B. S. Bhutta, “Coronary Artery Disease,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2022. Accessed: Feb. 19, 2022. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK564304/
[11] J. A. M. Sidey-Gibbons and C. J. Sidey-Gibbons, “Machine learning in medicine: a practical introduction,” BMC Med. Res. Methodol., vol. 19, no. 1, p. 64, Mar. 2019, doi: 10.1186/s12874-019-0681-4.
[12] B. A. Goldstein, A. M. Navar, and R. E. Carter, “Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges,” Eur. Heart J., vol. 38, no. 23, pp. 1805–1814, Jun. 2017, doi: 10.1093/eurheartj/ehw302.
[13] M. Nakai et al., “Development of a Cardiovascular Disease Risk Prediction Model Using the Suita Study, a Population-Based Prospective Cohort Study in Japan,” J. Atheroscler. Thromb., vol. 27, no. 11, pp. 1160–1175, Nov. 2020, doi: 10.5551/jat.48843.
[14] C.-W. Liang et al., “Predicting Hepatocellular Carcinoma With Minimal Features From Electronic Health Records: Development of a Deep Learning Model,” JMIR Cancer, vol. 7, no. 4, p. e19812, Oct. 2021, doi: 10.2196/19812.
[15] M. Chun et al., “Stroke risk prediction using machine learning: a prospective cohort study of 0.5 million Chinese adults,” J. Am. Med. Inform. Assoc., vol. 28, no. 8, pp. 1719–1727, Aug. 2021, doi: 10.1093/jamia/ocab068.
[16] D. R. Sarvamangala and R. V. Kulkarni, “Convolutional neural networks in medical image understanding: a survey,” Evol. Intell., vol. 15, no. 1, pp. 1–22, Mar. 2022, doi: 10.1007/s12065-020-00540-3.
[17] H. S. Maghdid, A. T. Asaad, K. Z. Ghafoor, A. S. Sadiq, and M. K. Khan, “Diagnosing COVID-19 Pneumonia from X-Ray and CT Images using Deep Learning and Transfer Learning Algorithms,” ArXiv200400038 Cs Eess, Mar. 2020, Accessed: Mar. 15, 2022. [Online]. Available: http://arxiv.org/abs/2004.00038
[18] K. Exarchos, Y. Goletsis, and D. Fotiadis, “Multiparametric Decision Support System for the Prediction of Oral Cancer Reoccurrence,” IEEE Trans. Inf. Technol. Biomed. Publ. IEEE Eng. Med. Biol. Soc., vol. 16, Aug. 2011, doi: 10.1109/TITB.2011.2165076.
[19] A. Singh, G. Nadkarni, O. Gottesman, S. B. Ellis, E. P. Bottinger, and J. V. Guttag, “Incorporating temporal EHR data in predictive models for risk stratification of renal function deterioration,” J. Biomed. Inform., vol. 53, pp. 220–228, Feb. 2015, doi: 10.1016/j.jbi.2014.11.005.
[20] C. Bui, N. Pham, A. Vo, A. Tran, A. Nguyen, and T. Le, “Time Series Forecasting for Healthcare Diagnosis and Prognostics with the Focus on Cardiovascular Diseases,” in 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6), vol. 63, T. Vo Van, T. A. Nguyen Le, and T. Nguyen Duc, Eds. Singapore: Springer Singapore, 2018, pp. 809–818. doi: 10.1007/978-981-10-4361-1_138.
[21] “UCI Machine Learning Repository: Heart Disease Data Set.” https://archive.ics.uci.edu/ml/datasets/heart+disease (accessed Mar. 14, 2022).
[22] A. Akella and S. Akella, “Machine learning algorithms for predicting coronary artery disease: efforts toward an open source solution,” Future Sci. OA, vol. 7, no. 6, p. FSO698, doi: 10.2144/fsoa-2020-0206.
[23] A. Guo, R. Beheshti, Y. M. Khan, J. R. Langabeer, and R. E. Foraker, “Predicting cardiovascular health trajectories in time-series electronic health records with LSTM models,” BMC Med. Inform. Decis. Mak., vol. 21, no. 1, p. 5, Jan. 2021, doi: 10.1186/s12911-020-01345-1.
[24] M.-S. Tsai et al., “Chang Gung Research Database: A multi-institutional database consisting of original medical records,” Biomed. J., vol. 40, no. 5, pp. 263–269, Oct. 2017, doi: 10.1016/j.bj.2017.08.002.
[25] Y.-J. Tseng, H.-J. Chiu, and C. J. Chen, “dxpr: an R package for generating analysis-ready data from electronic health records—diagnoses and procedures,” PeerJ Comput. Sci., vol. 7, p. e520, May 2021, doi: 10.7717/peerj-cs.520.
[26] “dx-time: 健康資料時間序列分析R套件__長庚大學機構典藏系統.” http://ir.lib.cgu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dalldb&s=id=%22CD000000011994%22.&searchmode=basic (accessed Feb. 15, 2022).
[27] “• dxtime.” https://dhlab-tseng.github.io/dxtime/docs/articles/dxtime.html#- (accessed Mar. 01, 2022).
[28] “lab: a package for EHR laboratory data.” https://dhlab-tseng.github.io/lab/index.html (accessed Feb. 15, 2022).
[29] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
[30] “Keras: the Python deep learning API.” https://keras.io/ (accessed Jun. 29, 2022).
[31] “TensorFlow,” TensorFlow. https://www.tensorflow.org/?hl=zh-tw (accessed Jun. 29, 2022).
[32] S. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions.” arXiv, Nov. 24, 2017. doi: 10.48550/arXiv.1705.07874.
指導教授 許智誠 博士 曾意儒 博士(Jyh-Cheng Hsu Ph.D. Yi-Ju Tseng, Ph.D.) 審核日期 2022-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明