博碩士論文 109521115 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.116.88.216
姓名 王柏舜(Po-Shun Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於光達系統並具有高輸出電流及高表 現單光子偵測特性之堆疊式累增崩潰光二極體
(High-Performances Cascaded Multiplication-Layer Avalanche Photodiodes: From High-Saturation Current Output to Single-Photon Detection for Lidar Applications)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 迄今為止,累增崩潰光二極體(APD)在多種不同應用中的接收端發揮著重要作用,例如:光學雷達(LiDAR)、光子數解析(PNR)、量子密鑰分發(QKD)及量子計算等等。在這篇論文中,我們展示了一種新穎的累增崩潰二極體,它克服了傳統累增崩潰光二極體中飽和電流和響應度表現之間的互相衝突,同時適用於單光子偵測及調頻連續波(FMCW)光學雷達系統。

在這篇論文中,我們證實擁有三層累增層設計的正面收光累增崩潰光二極體,在線性和蓋格模式下操作都可以獲得優異的表現。與先前雙層累增層元件相比,採用三層In0.52Al0.48As的累增層設計能以較低的臨界電場值發生崩潰現象,而累增層所需電場的減少,也確保更強的電場能分配給厚的吸收層,使累增崩潰光二極體擁有較低的崩潰電壓,這也讓元件在高輸出光電流下,減緩空間電荷屏蔽效應及熱效應。透過結合蝕刻平台型結構及堆疊式累增層結構,我們可以將累增層側壁的邊緣電場抑制在2kV/cm。

當操作在線性模式(0.95Vbr),主動區直徑60μm的元件擁有19.6A/W的高響應度及 >5.6mA的1-dB飽和電流。使用主動區直徑為200μm的元件能同時擁有14.6mA的高飽和電流及1.4GHz的光電頻率響應。這種新穎式結構相比於之前雙層累增層的元件和高性能的商用元件,只需較低的本地震盪器輸出功率(0.5 vs. 4mW),便能在我們實驗室自己建立的FMCW光達系統中表現出高訊雜比及高品質的3D成像。

當操作在蓋格模式,我們的單光子偵測器(SPD)降至225K的溫度與10kHz的閘控頻率下,能夠擁有74%單光子偵測效率、較低的暗計數及101ps的時基誤差,且只需50ns的推遲時間即可避免後脈衝效應所帶來的影響。根據上述結果所示,我們證實這種單光子偵測器可以進一步提高下一代 ToF光學雷達的靈敏度。
摘要(英) To date APDs have come to play an important role at the receiving end in several different applications, such as light detection and ranging(LiDAR), photon number resolving(PNR), quantum key distribution(QKD) and quantum computing. In this work, a novel avalanche photodiode (APD) design is demonstrated which overcomes the fundamental trade-off between responsivity and saturation current performance found in the traditional APDs, for receiver-end applications in single photon detection and frequency modulated continuous wave (FMCW) LiDAR.

In this novel vertically-illuminated APD, which can deliver remarkable performances in both the linear and Geiger mode operations. The adoption of multiple (triple) In0.52Al0.48As based M-layer makes the avalanche process become more pronounced under a much less effective critical field compared to the dual M-layer reference device. The decrease of the E-field required in our active M-layer ensures that a stronger E-field can be allocated to the thick absorption layer with a smaller breakdown voltage for APD operations. This in turn leads to a less serious space-charge screening effect and less device heating under a high output photocurrent. By combining the etch mesa type with this cascaded M-layer structure, the electric (E-) field at the sidewall of the M-layer can be suppressed to 2kV/cm.

Under linear mode (0.95Vbr) operation, it can achieve high responsivity(19.6A/W), high 1-dB saturation current(>5.6mA), using the demonstrated APD with its 60 µm diameter active window. Extremely high saturation current (>14.6mA), and decent O-E response (1.4 GHz) can be simultaneously achieved using the demonstrated APD with its 200 µm diameter active window. This novel APD exhibits a larger signal-to-noise ratio in each pixel and much better quality of constructed 3-D images in home-made FMCW LiDAR system than those of obtained with the reference dual M-layer sample and high-performance commercial p-i-n PD modules, with much less optical local-oscillator(LO) power required (0.5 vs. 4mW).

Under Geiger mode, the single-photon detector(SPD) cooled to 225 K for high single-photon detection efficiency(SPDE) of 74%, lower dark count rate (DCR), and neat temporal characteristic of 101ps without the involvement of afterpulsing at short hold-off time(50ns). These results strongly support that such novel single-photon detector can further enhance the sensitivity of the next generation ToF LiDAR system.
關鍵字(中) ★ 單光子偵測器
★ 累增崩潰光二極體
★ 光達系統
關鍵字(英) ★ Single photon detector
★ Avalanche photodiode
★ LiDAR
論文目次 Abstract i
摘要 iii
致謝 v
目錄 vii
圖目錄 xi
表目錄 xix
第一章 序論 1
§1-1光達系統 1
I. 飛時測距(ToF)之光達系統 1
II. 調頻連續波(FMCW)之光達系統 5
§1-2 累增崩潰光二極體(APD)之工作原理 8
§1-3 單光子偵測器(Single-photon detector) 11
I. Si based單光子累增崩潰光二極體(SPAD) 12
II. Ge-on-Si based單光子累增崩潰光二極體(SPAD) 13
III. InP based單光子累增崩潰光二極體(SPAD) 18
IV. InAlAs based單光子累增崩潰光二極體(SPAD) 22
§1-4 累增崩潰光二極體(APD)高輸出功率限制 29
§1-5 論文研究動機及架構 31
第二章 累增崩潰光二極體之設計與製作 33
§2-1累增崩潰光二極體之設計與模擬 33
I.光窗層(Window layer) 33
II.吸收層(Absorption layer) 34
III.累增層(Multiplication layer) 35
IV.漸變層(Grading layer) 40
V.電場控制層(Field control layer) 40
§2-2累增崩潰光二極體之製程 42
I. 試片準備 43
II.第一個蝕刻平台(First Mesa)製作 44
III.第二個蝕刻平台(Second Mesa)製作 46
IV.絕緣層(Isolation)製作 48
V.硫化(Sulfur process)處理 49
VI. 蒸鍍P型金屬(P Metal) 50
VII.蒸鍍N型金屬(N Metal) 52
VIII.聚硫亞銨(Polyimide)鈍化層製作 53
IX.金屬接線(Pad)製程 57
IX.抗反射薄膜(Anti-reflective coating)製程 59
第三章 累增崩潰光偵測器之高功率量測及結果討論 62
§3-1 DC 量測系統之架設 62
§3-2光電流量測結果 63
§3-3頻率響應量測系統之架設 70
§3-4頻率響應量測結果 71
§3-5自相外差頻率調變連續波(FMCW)光達系統架設 75
§3-6自相外差頻率調變連續波(FMCW)光達系統量測結果 78
I. 系統之訊雜比(SNR)量測結果 78
II. 累增崩潰光二極體之飽和電流特性 81
III. 自相外差頻率調變連續波(FMCW)光達系統中捕捉之影像 83
第四章 單光子偵測之量測及結果討論 86
§4-1 單光子偵測量測系統 86
I. 單光子偵測外部截止電路 88
II. 變溫IV量測系統架設 94
III. 暗計數量測系統架設 95
IV. 光計數量測系統架設 96
V. 後脈衝量測系統架設 99
VI. 時基誤差量測系統架設 101
§4-2 單光子偵測量測結果與探討 102
I. 變溫 IV 量測結果 102
II. 暗計數量測結果 105
III. 後脈衝量測結果 108
IV. 光計數量測結果 110
V. 時基誤差(Timing jitter)量測結果 115
VI. 單光子累增崩潰光二極體(SPAD)數據比較 119
第五章 結論與未來研究方向 120
§5-1 結論 120
§5-2 未來研究方向 121
I. 光子數解析偵測器(Photon Number Resolving Detector, PNRD) 121
II. 具閘極電極(Gate electrode)之累增崩潰光二極體 125
參考文獻 129
參考文獻 [1] Yan-Min Liao, "High-Performances Dual M-Layers Avalanche Photodiodes from Single-Photon Detection to High Saturation Output Power for LiDAR application," Master thesis, National Central University, Taiwan, July, 2021.
[2] https://www.eet-china.com/news/202011090939.html
[3] https://epcco.com/epc/Applications/Lidar.as.html
[4] https://www.ddcar.com.tw/article/26602.html
[5] https://www.novuslight.com/fmcw-the-future-of-lidar.html
[6] https://www.laserfocusworld.com/home/article/16556322/lasers-for- lidar-fmcw-lidar-an-alternative-for-selfdriving-cars.html
[7] M. Nada, Y. Yamada and H. Matsuzaki, "A High-Linearity Avalanche Photodiodes with a Dual-Carrier Injection Structure," IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1828-1831, Nov., 2017.
[8] P. Runge, G. Zhou, T. Beckerwerth, F. Ganzer, S. Keyvaninia, S. Seifert, W. Ebert, S. Mutschall, A. Seeger, and M. Schell, "Waveguide Integrated Balanced Photodetectors for Coherent Receivers," IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 2, pp. 1-7, April, 2018.
[9] https://www.ques10.com/p/19228/explain-the-basic-princple-of-operation-of-phot-1.html
[10] S. O. Kasap, "Optoelectronics and photonics: principles and practices," Prentice Hall, 2001.
[11] https://blog.xuite.net/jesonchung/scienceview/93552804.html
[12] B. Jalali, M. Paniccia G. Reed, "Silicon photonics," IEEE Photon. Technol. Lett., vol. 7, no. 12, pp. 4600-4615, June, 2006.
[13] S. Q. Yu, S. A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, "Si based GeSn light emitter: mid-infrared device in Si photonics," Proc. SPIE, vol. 9367, Feb., 2015.
[14] Y. Q. Fang, W. Chen, T. H. Ao, C. Liu, L. Wang, X. J. Gao, J. Zhang, and J. W. Pan, "InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm, " Rev. Sci. Instruments, vol. 91, pp. 083102, Aug., 2020.
[15] F. Ceccarelli, G. Acconcia, A. Gulinatti, M. Ghioni, I. Rech, and R. Osellame, "Recent advances and future perspectives of single-photon avalanche diodes for quantum photonics applications," Adv. Quantum Technol., vol. 4, no. 2, pp. 2000102, Dec., 2020.
[16] F. Signorelli, F. Telesca, E. Conca, A. D. Frera, A. Ruggeri, A. Giudice, and A. Tosi, "Low-Noise InGaAs/InP Single-Photon Avalanche Diodes for Fiber-Based and Free-Space Applications," IEEE J. Sel. Top. Quantum Electron., vol. 28, no. 2, pp. 3801310, April, 2022.
[17] A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, "Active Area Uniformity of InGaAs/InP Single-Photon Avalanche Diodes," IEEE Photon. J., vol. 3, no. 1, pp. 30-41, Feb., 2011.
[18] J. Zhang, H. Wang, G. Zhang, K. H. Tan, S. Wicaksono, H. Xu, C. Wang, Y. Chen, Y. Liang, Charles C. W. Lim, S. F. Yoon, and X. Gong, "High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection," Opt. Lett., vol. 46, no.11, pp. 2670-2673, June, 2021.
[19] https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/212/0210
[20] D. A. Ramirez, M. M. Hayat, G. Karve, J. C. Campbell, S. N. Torres, Bahaa E. A. Saleh, and M. C. Teich, " Detection Efficiencies and Generalized Breakdown Probabilities for Nanosecond-Gated Near Infrared Single-Photon Avalanche Photodiodes," IEEE J. Sel. Top. Quantum Electron., vol. 42, no. 2, pp. 137-145, Mar., 2006.
[21] M. A. Saleh, M. M. Hayat, P. P. Sotirelis, A. L. Holmes, J. C. Campbell, Bahaa E. A. Saleh and M. C. Teich, "Impact-Ionization and Noise Characteristics of Thin III-V Avalanche Photodiodes," IEEE Trans. Electron Devices, vol. 48, no.12, pp. 2722-2731, Dec., 2001.
[22] http://impact-ionisation.group.shef.ac.uk/ionisation_coeff/InP/
[23] http://impact-ionisation.group.shef.ac.uk/ionisation_coeff/InAlAs/
[24] S. Lee, M. Winslow, C. H. Grein, S. H. Kodati, A. H. Jones, D. R. Fink, P. Das, M. M. Hayat, T. J. Ronningen, J. C. Campbell, and S. Krishna, "Engineering of impact ionization characteristics in In0.53Ga0.47As/Al0.48In0.52As superlattice avalanche photodiodes on InP substrate," Sci. Rep., vol. 10, pp. 16735, Oct., 2020.
[25] C. I. Dai, "Single-Photon Avalanche Photodiode Fabricated with Standard CMOS Technology," Master thesis, National Chiao Tung University, Taiwan, July, 2010.
[26] Y. Xiao, I. Bhat, and M. N. Abedin, "Performance dependences on multiplication layer thickness for InP/InGaAs avalanche photodiodes based on time domain modeling," Proc. SPIE, vol. 5881, Sep., 2005.
[27] http://www.film-top1.com/news-info.aspid_279.html
[28] M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki, “Triple-mesa Avalanche Photodiode with Inverted P-Down Structure for Reliability and Stability,” IEEE J. Lightw. Technol., vol. 32, no. 8, pp. 1543-1548, April, 2014.
[29] M. Nada, Y. Yamada, and H. Matsuzaki, “Responsivity-Bandwidth Limit of Avalanche Photodiodes: Toward Further Ethernet Systems,” IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 2, pp. 3800811, April, 2018.
[30] J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, "Recent Advances in Avalanche Photodiodes," IEEE J. Sel. Top. Quantum Electron., vol. 10, no.2, pp. 777-787, Aug., 2004.
[31] A. Gallivanoni, I. Rech and M. Ghioni, "Progress in Quenching Circuits for Single Photon Avalanche Diodes," IEEE Trans. on Nucl. Sci., vol. 57, no. 6, pp. 3815-3826, Dec., 2010.
[32] M. Liu, C. Hu, X. Bai, X. Guo, J. C. Campbell, Z. Pan, and M. M. Tashima, "High-Performance InGaAs/InP Single-Photon Avalanche Photodiode," IEEE J. Sel. Top. Quantum Electron., vol. 13, no. 4, pp. 887-894, Aug., 2007.
[33] Y. Ma, Y. Zhang, Y. Gu, X. Chen, Y. Shi, W. Ji, S. Xi, B. Du, X. Li, H. Tang, Y. Li, and J. Fang, "Impact of etching on the surface leakage generation in mesa-type InGaAs/InAlAs avalanche photodetectors." Opt. Exp., vol. 24, no. 7, pp. 7823-7834, 2016.
[34] G. Karve, S. Wang, F. Ma, X. Li, and J. C. Campbell, "Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes operated in Geiger mode,"Appl. Phys. Lett., vol. 86, pp. 063505, Feb., 2005.
[35] C. I. Dai, "Single-Photon Avalanche Photodiode Fabricated with Standard CMOS Technology," Master thesis, National Chiao Tung University, Taiwan, July, 2010.
[36] C. Niclass, M. Gersbach, R. Henderson, L. Grant, E. Charbon, “A Single Photon Avalanche Diode Implemented in 130-nm CMOS Technology,” IEEE J. Sel. Top. Quantum Electron., vol. 13, no. 4, pp. 863-869, Aug., 2007.
[37] Zheng-Ru Lee, "Characteristic of Single-Photon Avalanche Diode with Vertical and Lateral Structures," Master thesis, National Chiao Tung University, Taiwan, July, 2011.
[38] Y. S. Lee, Y. M. Liao, P. L. Wu, C. E. Chen, Y. J. Teng, Y. Y. Hung, J. W. Shi, "In0.52Al0.48As Based Single Photon Avalanche Diodes with Stepped E-field in Multiplication Layers and High Efficiency Beyond 60 %," IEEE J. Sel. Top. Quantum Electron., vol. 28, no. 2, pp. 3802107, April, 2022.
[39] L. C. Comandar, B. Frohlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm,” J. Appl. Phys., vol. 117, pp. 083109, Feb., 2015.
[40] A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 6, pp. 3803406, Dec., 2014.
[41] Y. S. Lee, P. L. Wu, Naseem, Y. J. Chen, and J. W. Shi, “Neat temporal performance of InGaAs/InAlAs single photon avalanche diode with stepwise electric field in multiplication layers,” IEEE Access, vol. 9, pp. 32979-32985, 2021.
[42] M. Fujiwara and M. Sasaki, “Photon-number-resolving detection at a telecommunications wavelength with a charge-integration photon detector,” Opt. Lett., vol. 31, no. 6, pp. 691-693, Feb., 2006.
[43] J. Zhao, T. Milanese, F. Gramuglia, P. Keshavarzian, S. S. Tan, M. Tng, L. Lim, V. Dhulla, E. Quek, M. J. Lee and E. Charbon, “On Analog Silicon Photomultipliers in Standard 55-nm BCD Technology for LiDAR Applications,” IEEE J. Sel. Top. Quantum Electron., vol. 28, no. 5, pp. 3804010, Oct., 2022.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2022-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明