參考文獻 |
﹝1﹞WHO — World Health Organization, “Depression,” Fact Sheets, 2021.[Online]. Available: https://www.who.int/news-room/fact- sheets/detail/depression
﹝2﹞A. Pampouchidou, P. Simos, K. Marias, F. Meriaudeau, F. Yang, M. Pediaditis, and M. Tsiknakis, “Automatic assessment of depres- sion based on visual cues: A systematic review,” IEEE Transactions on Affective Computing, vol. 10, no. 4, pp. 445–470, 2019.
﹝3﹞L. He, M. Niu, P. Tiwari, P. Marttinen, R. Su, J. Jiang, C. Guo, H. Wang, S. Ding, Z. Wang et al., “Deep learning for depression recognition with audiovisual cues: A review,” Information Fusion, vol. 80, pp. 56–86, 2022.
﹝4﹞D. C. Mohr, J. Ho, J. Duffecy, K. G. Baron, K. A. Lehman, L. Jin, and D. Reifler, “Perceived barriers to psychological treatments and their relationship to depression,” Journal of clinical psychology, vol. 66, no. 4, pp. 394–409, 2010.
﹝5﹞M. J. DuPont-Reyes, A. P. Villatoro, J. C. Phelan, K. Painter, and B. G. Link, “Adolescent views of mental illness stigma: An intersectional lens.” American Journal of Orthopsychiatry, vol. 90, no. 2, p. 201, 2020.
﹝6﹞N. Cummins, V. Sethu, J. Epps, J. R. Williamson, T. F. Quatieri, and J. Krajewski, “Generalized two-stage rank regression framework for depression score prediction from speech,” IEEE Transactions on Affective Computing, vol. 11, no. 02, pp. 272–283, 2020.
﹝7﹞C. Koch, M. Wilhelm, S. Salzmann, W. Rief, and F. Euteneuer, “A meta-analysis of heart rate variability in major depression,” Psychological Medicine, vol. 49, no. 12, pp. 1948–1957, 2019.
﹝8﹞J. Zhu, Z. Wang, T. Gong, S. Zeng, X. Li, B. Hu, J. Li, S. Sun, and L. Zhang, “An improved classification model for depression detection using eeg and eye tracking data,” IEEE transactions on nanobioscience, vol. 19, no. 3, pp. 527–537, 2020.
﹝9﹞L. Yang, D. Jiang, and H. Sahli, “Integrating deep and shallow models for multi-modal depression analysis—hybrid architec- tures,” IEEE Transactions on Affective Computing, vol. 12, no. 01, pp. 239–253, 2021.
﹝10﹞C. Demiroglu, A. Bes¸irli, Y. Ozkanca, and S. C¸elik, “Depression- level assessment from multi-lingual conversational speech data using acoustic and text features,” EURASIP Journal on Audio, Speech, and Music Processing, vol. 2020, no. 1, pp. 1–17, 2020.
﹝11﹞X. Zhou, K. Jin, Y. Shang, and G. Guo, “Visually interpretable representation learning for depression recognition from facial images,” IEEE Transactions on Affective Computing, vol. 11, no. 03, pp. 542–552, 2020.
﹝12﹞J. Firth, J. Torous, J. Nicholas, R. Carney, A. Pratap, S. Rosen- baum, and J. Sarris, “The efficacy of smartphone-based mental health interventions for depressive symptoms: a meta-analysis of randomized controlled trials,” World Psychiatry, vol. 16, no. 3, pp. 287–298, 2017.
﹝13﹞M. Fuller-Tyszkiewicz, B. Richardson, B. Klein, H. Skouteris, H. Christensen, D. Austin, D. Castle, C. Mihalopoulos, R. O’Donnell, L. Arulkadacham et al., “A mobile app–based in- tervention for depression: End-user and expert usability testing study,” JMIR mental health, vol. 5, no. 3, p. e54, 2018.
﹝14﹞G. M. Lucas, J. Gratch, A. King, and L.-P. Morency, “It’s only a computer: Virtual humans increase willingness to disclose,” Computers in Human Behavior, vol. 37, pp. 94–100, 2014.
﹝15﹞M. D. Pickard, C. A. Roster, and Y. Chen, “Revealing sensitive information in personal interviews: Is self-disclosure easier with humans or avatars and under what conditions?” Computers in Human Behavior, vol. 65, pp. 23–30, 2016.
﹝16﹞M. Valstar, B. Schuller, K. Smith, F. Eyben, B. Jiang, S. Bilakhia, S. Schnieder, R. Cowie, and M. Pantic, “Avec 2013: the continuous audio/visual emotion and depression recognition challenge,” in Proceedings of the 3rd ACM international workshop on Audio/visual emotion challenge, 2013, pp. 3–10.
﹝17﹞M. Valstar, B. Schuller, K. Smith, T. Almaev, F. Eyben, J. Krajewski, R. Cowie, and M. Pantic, “Avec 2014: 3d dimensional affect and depression recognition challenge,” in Proceedings of the 4th interna- tional workshop on audio/visual emotion challenge, 2014, pp. 3–10.
﹝18﹞M. Valstar, J. Gratch, B. Schuller, F. Ringeval, D. Lalanne, M. Tor- res Torres, S. Scherer, G. Stratou, R. Cowie, and M. Pantic, “Avec 2016: Depression, mood, and emotion recognition workshop and challenge,” in Proceedings of the 6th international workshop on au- dio/visual emotion challenge, 2016, pp. 3–10.
﹝19﹞T. Baltruˇ saitis, P. Robinson, and L.-P. Morency, “Openface: an open source facial behavior analysis toolkit,” in 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2016, pp. 1–10.
﹝20﹞G. Degottex, J. Kane, T. Drugman, T. Raitio, and S. Scherer, “Covarep—a collaborative voice analysis repository for speech technologies,” in 2014 ieee international conference on acoustics, speech and signal processing (icassp). IEEE, 2014, pp. 960–964.
﹝21﹞F. Ringeval, B. Schuller, M. Valstar, N. Cummins, R. Cowie, L. Tavabi, M. Schmitt, S. Alisamir, S. Amiriparian, E.-M. Messner et al., “Avec 2019 workshop and challenge: state-of-mind, detect- ing depression with ai, and cross-cultural affect recognition,” in Proceedings of the 9th International on Audio/visual Emotion Challenge and Workshop, 2019, pp. 3–12.
﹝22﹞F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, E. Andr´ e, C. Busso, L. Y. Devillers, J. Epps, P. Laukka, S. S. Narayanan et al., “The geneva minimalistic acoustic parameter set (gemaps) for voice research and affective computing,” IEEE transactions on affective computing, vol. 7, no. 2, pp. 190–202, 2015.
﹝23﹞K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
﹝24﹞A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica- tion with deep convolutional neural networks,” Advances in neural information processing systems, vol. 25, 2012.
﹝25﹞G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.
﹝26﹞K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
﹝27﹞W. C. de Melo, E. Granger, and M. B. Lopez, “Mdn: A deep maximization-differentiation network for spatio-temporal depres- sion detection,” IEEE Transactions on Affective Computing, 2021.
﹝28﹞M. Al Jazaery and G. Guo, “Video-based depression level analysis by encoding deep spatiotemporal features,” IEEE Transactions on Affective Computing, vol. 12, no. 01, pp. 262–268, 2021.
﹝29﹞Z. Zhao, Z. Bao, Z. Zhang, J. Deng, N. Cummins, H. Wang, J. Tao, and B. Schuller, “Automatic assessment of depression from speech via a hierarchical attention transfer network and attention autoencoders,” IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 2, pp. 423–434, 2019.
﹝30﹞S. H. Dumpala, S. Rempel, K. Dikaios, M. Sajjadian, R. Uher, and S. Oore, “Estimating severity of depression from acoustic features and embeddings of natural speech,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 7278–7282.
﹝31﹞E. Rejaibi, A. Komaty, F. Meriaudeau, S. Agrebi, and A. Oth- mani, “Mfcc-based recurrent neural network for automatic clinical depression recognition and assessment from speech,” Biomedical Signal Processing and Control, vol. 71, p. 103107, 2022.
﹝32﹞H. Cai, X. Zhang, Y. Zhang, Z. Wang, and B. Hu, “A case- based reasoning model for depression based on three-electrode eeg data,” IEEE Transactions on Affective Computing, vol. 11, no. 03, pp. 383–392, 2020.
﹝33﹞C. Jiang, Y. Li, Y. Tang, and C. Guan, “Enhancing eeg-based classification of depression patients using spatial information,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 566–575, 2021.
﹝34﹞Z. Pan, H. Ma, L. Zhang, and Y. Wang, “Depression detection based on reaction time and eye movement,” in 2019 IEEE Inter- national Conference on Image Processing (ICIP). IEEE, 2019, pp. 2184–2188.
﹝35﹞M. Li, L. Cao, Q. Zhai, P. Li, S. Liu, R. Li, L. Feng, G. Wang, B. Hu, and S. Lu, “Method of depression classification based on behavioral and physiological signals of eye movement,” Complexity, vol. 2020, p. 4174857, Jan 2020.[Online]. Available: https://doi.org/10.1155/2020/4174857
﹝36﹞H. Dibeklio˘glu, Z. Hammal, and J. F. Cohn, “Dynamic multimodal measurement of depression severity using deep autoencoding,” IEEE journal of biomedical and health informatics, vol. 22, no. 2, pp. 525–536, 2017.
﹝37﹞H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information criteria of max-dependency, max-relevance, and min- redundancy,” IEEE Transactions on pattern analysis and machine intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.
﹝38﹞S. A. Qureshi, S. Saha, M. Hasanuzzaman, and G. Dias, “Multitask representation learning for multimodal estimation of depression level,” IEEE Intelligent Systems, vol. 34, no. 5, pp. 45–52, 2019.
﹝39﹞G. Lam, H. Dongyan, and W. Lin, “Context-aware deep learning for multi-modal depression detection,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 3946–3950.
﹝40﹞M. Rodrigues Makiuchi, T. Warnita, K. Uto, and K. Shinoda, “Multimodal fusion of bert-cnn and gated cnn representations for depression detection,” in Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop, 2019, pp. 55–63.
﹝41﹞J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre- training of deep bidirectional transformers for language under- standing,” arXiv preprint arXiv:1810.04805, 2018.
﹝42﹞M. Hamilton, “A rating scale for depression,” Journal of neurology, neurosurgery, and psychiatry, vol. 23, no. 1, p. 56, 1960.
﹝43﹞J. Angst, R. Adolfsson, F. Benazzi, A. Gamma, E. Hantouche, T. D. Meyer, P. Skeppar, E. Vieta, and J. Scott, “The hcl-32: towards a self- assessment tool for hypomanic symptoms in outpatients,” Journal of affective disorders, vol. 88, no. 2, pp. 217–233, 2005.
﹝44﹞H. Tian, C. Gao, X. Xiao, H. Liu, B. He, H. Wu, H. Wang, and F. Wu, “Skep: Sentiment knowledge enhanced pre-training for sentiment analysis,” arXiv preprint arXiv:2005.05635, 2020.
﹝45﹞M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con- volutional neural networks,” in International conference on machine learning. PMLR, 2019, pp. 6105–6114.
﹝46﹞A. Zadeh and P. Pu, “Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion graph,” in Proceedings of the 56th Annual Meeting of the Association for Compu- tational Linguistics (Long Papers), 2018.
﹝47﹞C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N. Chang, S. Lee, and S. S. Narayanan, “Iemocap: Interactive emotional dyadic motion capture database,” Language resources and evaluation, vol. 42, no. 4, pp. 335–359, 2008.
﹝48﹞S. R. Livingstone and F. A. Russo, “The ryerson audio-visual database of emotional speech and song (ravdess): A dynamic, multimodal set of facial and vocal expressions in north american english,” PloS one, vol. 13, no. 5, p. e0196391, 2018.
﹝49﹞F. Burkhardt, A. Paeschke, M. Rolfes, W. F. Sendlmeier, B. Weiss et al., “A database of german emotional speech.” in Interspeech, vol. 5, 2005, pp. 1517–1520.
﹝50﹞M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic, “A multi- modal database for affect recognition and implicit tagging,” IEEE transactions on affective computing, vol. 3, no. 1, pp. 42–55, 2011.
﹝51﹞W.-L. Zheng, W. Liu, Y. Lu, B.-L. Lu, and A. Cichocki, “Emo- tionmeter: A multimodal framework for recognizing human emo- tions,” IEEE transactions on cybernetics, vol. 49, no. 3, pp. 1110–1122, 2018.
﹝52﹞J. A. Russell, “A circumplex model of affect.” Journal of personality and social psychology, vol. 39, no. 6, p. 1161, 1980.
﹝53﹞S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the measurement of the psychological magnitude pitch,” The journal of the acoustical society of america, vol. 8, no. 3, pp. 185–190, 1937.
﹝54﹞S. Davis and P. Mermelstein, “Comparison of parametric rep- resentations for monosyllabic word recognition in continuously spoken sentences,” IEEE transactions on acoustics, speech, and signal processing, vol. 28, no. 4, pp. 357–366, 1980.
﹝55﹞D.-N. Jiang, L. Lu, H.-J. Zhang, J.-H. Tao, and L.-H. Cai, “Music type classification by spectral contrast feature,” in Proceedings. IEEE International Conference on Multimedia and Expo, vol. 1. IEEE, 2002, pp. 113–116.
﹝56﹞D. Ellis, “Chroma feature analysis and synthesis,” Resources of Laboratory for the Recognition and Organization of Speech and Audio- LabROSA, vol. 5, 2007.
﹝57﹞C. Harte, M. Sandler, and M. Gasser, “Detecting harmonic change in musical audio,” in Proceedings of the 1st ACM workshop on Audio and music computing multimedia, 2006, pp. 21–26.
﹝58﹞O. Wiles, A. Koepke, and A. Zisserman, “Self-supervised learn- ing of a facial attribute embedding from video,” arXiv preprint arXiv:1808.06882, 2018.
﹝59﹞A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-scale speaker identification dataset,” arXiv preprint arXiv:1706.08612, 2017.
﹝60﹞J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep speaker recognition,” arXiv preprint arXiv:1806.05622, 2018.
﹝61﹞A. H. Kemp, D. S. Quintana, M. A. Gray, K. L. Felmingham, K. Brown, and J. M. Gatt, “Impact of depression and antide- pressant treatment on heart rate variability: a review and meta- analysis,” Biological psychiatry, vol. 67, no. 11, pp. 1067–1074, 2010.
﹝62﹞R. Hartmann, F. M. Schmidt, C. Sander, and U. Hegerl, “Heart rate variability as indicator of clinical state in depression,” Frontiers in psychiatry, vol. 9, p. 735, 2019.
﹝63﹞G. Boccignone, D. Conte, V. Cuculo, A. D’Amelio, G. Grossi, and R. Lanzarotti, “An open framework for remote-PPG methods and their assessment,” IEEE Access, pp. 1–1, 2020.[Online]. Available: https://doi.org/10.1109/access.2020.3040936
﹝64﹞S. Krishna and J. Anju, “Different approaches in depression anal- ysis: A review,” in 2020 International Conference on Computational Performance Evaluation (ComPE). IEEE, 2020, pp. 407–414.
﹝65﹞Y. Lin, H. Ma, Z. Pan, and R. Wang, “Depression detection by combining eye movement with image semantics,” in 2021 IEEE International Conference on Image Processing (ICIP). IEEE, 2021, pp. 269–273.
﹝66﹞R. Shen, Q. Zhan, Y. Wang, and H. Ma, “Depression detection by analysing eye movements on emotional images,” in ICASSP 2021- 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 7973–7977.
﹝67﹞G. Buscher, A. Dengel, and L. van Elst, “Eye movements as implicit relevance feedback,” in CHI’08 extended abstracts on Human factors in computing systems, 2008, pp. 2991–2996.
﹝68﹞C. Rigaud, T.-N. Le, J.-C. Burie, J.-M. Ogier, S. Ishimaru, M. Iwata, and K. Kise, “Semi-automatic text and graphics extraction of manga using eye tracking information,” in 2016 12th IAPR Work- shop on Document Analysis Systems (DAS). IEEE, 2016, pp. 120–125.
﹝69﹞J. G. Saxe, The blind men and the elephant. Enrich Spot Limited, 2016. |