參考文獻 |
[1] R. S. Fisher et al., “ILAE official report: A practical clinical definition of epilepsy”, Epilepsia, vol. 55, no. 4, pp. 475-482, Apr. 2014.
[2] H. M. de Boer, M. Mula and J. W. Sander, “The global burden and stigma of epilepsy”, Epilepsy Behav., vol. 12, no. 4, pp. 540-546, 2008.
[3] Carl E. Stafstrom, and Lionel Carmant, “Seizures and Epilepsy: An Overview for Neuroscientists”, Cold Spring Harbor Perspectives in Medicine, June, 2015.
[4] X. Yang, J. Zhao, Q. Sun, J. Lu and X. Ma, “An effective dual self-attention residual network for seizure prediction”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 1604-1613, 2021.
[5] Y. Yuan, G. Xun, K. Jia and A. Zhang, “A multi-view deep learning method for epileptic seizure detection using short-time Fourier transform”, Proc. 8th ACM Int. Conf. Bioinf. Comput. Biol. Health Inform., pp. 213-222, Aug. 2017.
[6] C. L. Liu, B. Xiao, W. H. Hsaio and V. S. Tseng, “Epileptic seizure prediction with multi-view convolutional neural networks”, IEEE Access, vol. 7, pp. 170352-1703613, Nov. 2019.
[7] H. Daoud and M. A. Bayoumi, “Efficient epileptic seizure prediction based on deep learning”, IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 5, pp. 804-813, Oct. 2019.
[8] Netoff, T., Park, Y. and Parhi, K., “Seizure Prediction Using Cost-Sensitive Support Vector Machine”, IEEE EMBS, 2009
[9] Zheng, G., Liutao, Y., Feng, Y., Han, Z., Chen, L., Zhang, S., Wang, D. and Han, Z., “Seizure Prediction Model Based on Method of Common Spatial Patterns and Support Vector Machine”, IEEE ICIST. 2012
[10] A. Romney and V. Manian, “Optimizing Seizure Prediction From Reduced Scalp EEG Channels Based on Spectral Features and MAML”, IEEE Access, vol. 9, pp. 164348-164357, Dec. 2021.
[11] P. Mirowski et al., “Classification of patterns of EEG synchronization for seizure prediction”, Clin. Neurophysiol., vol. 120, no. 11, pp. 1927-1940, 2009.
[12] P. Detti, G. Z. M. de Lara, R. Bruni, M. Pranzo, F. Sarnari and G. Vatti, “A patient-specific approach for short-term epileptic seizures prediction through the analysis of EEG synchronization”, IEEE Trans. Biomed. Eng., vol. 66, no. 6, pp. 1494-1504, Jun. 2019.
[13] B. V. Dasarathy and B. V. Sheela, “Composite classifier system design: Concepts and methodology”, Proceedings of the IEEE, vol. 67, 1979, pp. 708-713.
[14] L. Xu, A. Krzyzak, and C. Y. Suen, “Methods of combining multiple classifiers and their applications to handwriting recognition”, IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, no. 3, pp. 418-435, May 1992.
[15] Zhibin Sun, Ni-Bin Chang, Chi-Farn Chen, Chandan Mostafiz, Wei Gao, “Ensemble Learning via Higher Order Singular Value Decomposition for Integrating Data and Classifier Fusion in Water Quality Monitoring”, Selected Topics in Applied Earth Observations and Remote Sensing IEEE Journal of, vol. 14, pp. 3345-3360, 2021.
[16] M. Mohammadpour, M. Ghorbanian and S. Mozaffari, “Comparison of EEG signal features and ensemble learning methods for motor imagery classification”, Proc. 8th Int. Conf. Inf. Knowl. Technol., pp. 288-292, 2016.
[17] K. S. Kamble and J. Sengupta, “Ensemble Machine Learning-Based Affective Computing for Emotion Recognition Using Dual-Decomposed EEG Signals”, IEEE Sensors Journal, vol. 22, no. 3, pp. 2496-2507, 1 Feb.1, 2022
[18] Klem, George H. et al. “The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology”, Electroencephalography and Clinical Neurophysiology, 1999
[19] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David and C. E. Elger, “Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state”, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 64, no. 6, 2001.
[20] Y. Li, X.-D. Wang, M.-L. Luo, K. Li, X.-F. Yang and Q. Guo, “Epileptic seizure classification of EEGs using time–frequency analysis based multiscale radial basis functions”, IEEE J. Biomed. Health Informat., vol. 22, no. 2, pp. 386-397, Mar. 2018.
[21] A. Gupta, P. Singh and M. Karlekar, “A novel signal modeling approach for classification of seizure and seizure-free EEG signals”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 5, pp. 925-935, May 2018.
[22] M. Yazid et al., “Simple Detection of Epilepsy From EEG Signal Using Local Binary Pattern Transition Histogram”, in IEEE Access, vol. 9, pp. 150252-150267, 2021.
[23] Ali Shoeb, “Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment”, PhD Thesis, Massachusetts Institute of Technology, September 2009.
[24] J. R. Quinlan, “Bagging, boosting, and C4.5”, AAAI′96: Proceedings of the thirteenth national conference on Artificial intelligence, vol. 1, pp. 725-730, United States, 1996.
[25] X. Hu, ”Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications”, Proceedings 2001 IEEE International Conference on Data Mining, pp. 233-240, San Jose, CA, USA, 2001.
[26] G. Zenobi, and P. Cunningham, “Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error”, Machine Learning: ECML 2001, 12th European Conference on Machine Learning, vol. 2167, pp. 576-587, Freiburg, Germany, 2001.
[27] L. Breiman, “Bagging predictors”, Machine Learning, vol.24, no.2, pp. 123-140, 1996.
[28] M. Kearns, “Thoughts on Hypothesis Boosting”, Machine Learning Class Project, 1988.
[29] Zoltan J. Koles, Michael S. Lazar, Steven Z. Zhou, “Spatial patterns underlying population differences in the background EEG”, Brain Topography, vol.2,pp. 275-284, 1990.
[30] G. D. Johnson, and D. J. Krusienski, “Computational EEG analysis for brain-computer interfaces”, Computational EEG Analysis, pp. 193-214, Springer, Singapore, 2018.
[31] P. Herman, G. Prasad, T. M. McGinnity and D. Coyle, “Comparative analysis of spectral approaches to feature extraction for eeg-based motor imagery classification”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 16, no. 4, pp. 317-326, 2008.
[32] Y. Park, L. Luo, K. K. Parhi and T. Netoff, “Seizure prediction with spectral power of EEG using cost-sensitive support vector machines”, Epilepsia, vol. 52, no. 10, pp. 1761-1770, 2011.
[33] Z. Zhang and K. K. Parhi, “Low-complexity seizure prediction from iEEG/sEEG using spectral power and ratios of spectral power”, IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 3, pp. 693-706, Jun. 2016.
[34] Keshab K Parhi and Zisheng Zhang, “Discriminative ratio of spectral power and relative power features derived via frequency-domain model ratio with application to seizure prediction”, IEEE transactions on biomedical circuits and systems, vol. 13, no. 4, pp. 645-657, 2019.
[35] P. D. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short modified periodograms”, IEEE Trans. Audio Electroacoust., vol. AU-15, no. 2, pp. 70-73, Jun. 1967.
[36] Lachaux, Jean‐Philippe, “Measuring phase synchrony in brain signals”, Human brain mapping, pp. 194-208, 1999.
[37] G. A. Light et al., “Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients”, Biol. Psychiatry, vol. 60, no. 11, pp. 1231-1240, Dec. 2006.
[38] P. J. Uhlhaas and W. Singer, “Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology”, Neuron, vol. 52, no. 1, pp. 155-168, 2006.
[39] Boser, B. E. & Vapnik, V. N., “A Training Algorithm for Optimal Margin Classifiers”, Proceedings of the 5th Annual Workshop on Computational Learning Theory, pp. 144-152, July. 1992.
[40] Y. Zhang, Y. Guo, P. Yang, W. Chen and B. Lo, “Epilepsy seizure prediction on EEG using common spatial pattern and convolutional neural network”, IEEE J. Biomed. Health Inform., vol. 24, no. 2, pp. 465-474, Feb. 2020.
[41] D. Cho, B. Min, J. Kim and B. Lee, “EEG-based prediction of epileptic seizures using phase synchronization elicited from noise-assisted multivariate empirical mode decomposition”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 8, pp. 1309-1318, Aug. 2017.
[42] T. N. Alotaiby, S. A. Alshebeili, F. M. Alotaibi and S. R. Alrshoud, “Epileptic seizure prediction using CSP and LDA for scalp EEG signals”, Comput. Intell. Neurosci., vol. 2017, no. 6, pp. 1-11, 2017.
[43] A. R. Ozcan and S. Erturk, “Seizure Prediction in Scalp EEG Using 3D Convolutional Neural Networks With an Image-Based Approach”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 11, pp. 2284-2293, Nov. 2019.
[44] A. Romney and V. Manian, “Comparison of frontal-temporal channels in epilepsy seizure prediction based on EEMD-ReliefF and DNN”, Computers, vol. 9, no. 4, pp. 78, Sep. 2020.
[45] L. Tang, N. Xie, M. Zhao and X. Wu, “Seizure Prediction Using Multi-View Features and Improved Convolutional Gated Recurrent Network”, IEEE Access, vol. 8, pp. 172352-172361, 2020
[46] X. Yang, J. Zhao, Q. Sun, J. Lu and X. Ma, “An Effective Dual Self-Attention Residual Network for Seizure Prediction”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 1604-1613, 2021
[47] Y. Gao et al., “Pediatric Seizure Prediction in Scalp EEG Using a Multi-Scale Neural Network With Dilated Convolutions”, IEEE Journal of Translational Engineering in Health and Medicine, vol. 10, pp. 1-9, 2022 |