博碩士論文 109521085 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:3.12.163.105
姓名 王裕森(Yu-Sen Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於共空間模式與通道相關同步分析之前期癲癇預測
(Pre-seizure Prediction Based on Common Spatial Pattern and Channel-Dependent Synchronization Analysis)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-19以後開放)
摘要(中) 腦部為人類重要的器官之一,當其中一部份發生問題將造成患者極大的威脅,例如大腦受損的話將導致智力退化、記憶力喪失;小腦受損則是有小腦萎縮症Spinocerebellar Ataxia(SCA),將造成運動失調等;而癲癇發作(Epilepsy)為上述疾病中的共同現象,會造成反覆抽蓄、失神等症狀,導致患者在生活中遇到危險。

本論文藉由擷取少量電極之腦電圖(Electroencephalography, EEG)訊號,基於共空間形樣法(Common Spatial Patterns, CSP)、功率譜密度(Power Spectral Density, PSD)以及大腦電極通道間的同步相關性做為特徵,之後使用支持向量機(Support Vector Machine, SVM)進行分類。最後再藉由投票法進行最終的分類,以降低癲癇誤報率,提前預測癲癇發生。論文中以公開資料集CHB-MIT腦電圖數據庫進行演算法測試驗證,實驗分別在前期長度10分鐘以及30分鐘的情況下得到預測率91.3%、誤報率0.097以及預測率92.9%、誤報率0.108,可有效預測癲癇的發生。
摘要(英) Brain is one of the most important organs of human beings. When a problem happens in one part of it, it will pose a great threat to the patient. For example, cerebrum injury will cause intelligence degeneration, memory loss; cerebellum injury will cause movement disorders, called Spinocerebellar Ataxia(SCA). While epilepsy is the common phenomenon of above disorders, lead to repeated withdrawal, absence and other symptoms cause patients to encounter danger in life.

In this paper, by extracting EEG signals with few channels, based on Common Spatial Patterns(CSP), Power Spectral Density(PSD) and the synchronous correlation between brain electrode channels as features, then using Support Vector Machine(SVM) for classification. Finally using the voting method for the final classification, reducing the false alarm rate of epilepsy and predict the occurance of epilepsy in advance. Public dataset, CHB-MIT EEG database is used in this paper for algorithm verification. The result shows that the sensitivity reach 91.3%, 92.9% and average false prediction rate 0.097, 0.108 when preictal length is set to 10mins and 30mins respectively, which can predict seizure from happen efficiently.
關鍵字(中) ★ 癲癇
★ 腦電圖
★ 共同空間形樣法
★ 支持向量機
關鍵字(英) ★ Epilepsy
★ Electroencephalography
★ common spatial patterns
★ support vector machine
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 文獻回顧 2
深度學習: 3
共空間模式與頻譜功率 3
電極通道間相關性、同步性 4
集成學習 4
1-4 內容大綱 5
第二章 研究背景 6
2-1 大腦活動 6
2-2 癲癇種類及診斷 8
2-3 癲癇EEG資料庫 9
2-3-1 波恩大學EEG癲癇數據庫(Bonn EEG-dataset)[19] 9
2-3-2 CHB-MIT癲癇數據庫[23] 10
2-4 集成學習 11
2-4-1 簡介 11
2-4-2 裝袋算法(Bagging) 13
2-4-3 提升方法(Boosting) 14
2-4-4 堆疊泛化(Stacking) 15
第三章 演算法原理與系統架構 18
3-1 癲癇資料分類及預測判定概述 18
3-2 共空間模式(Common Spatial Pattern, CSP) 19
3-3 功率譜密度(Power Spectral Density, PSD) 23
3-4 相位鎖定值(Phase Locking Value, PLV) 25
3-5 帶通濾波器組(Filter Bank) 26
3-6 支持向量機(Support Vector Machine, SVM) 27
3-7 投票集成 28
3-8 移動平均濾波(Moving Average Filter) 31
第四章 實驗結果與討論 32
4-1 腦電訊號資料與實驗設計 32
4-2 集成學習與原始演算法之性能比較 33
4-3 比較方法與結果 48
第五章 結論與未來展望 51
參考文獻 52
參考文獻 [1] R. S. Fisher et al., “ILAE official report: A practical clinical definition of epilepsy”, Epilepsia, vol. 55, no. 4, pp. 475-482, Apr. 2014.
[2] H. M. de Boer, M. Mula and J. W. Sander, “The global burden and stigma of epilepsy”, Epilepsy Behav., vol. 12, no. 4, pp. 540-546, 2008.
[3] Carl E. Stafstrom, and Lionel Carmant, “Seizures and Epilepsy: An Overview for Neuroscientists”, Cold Spring Harbor Perspectives in Medicine, June, 2015.
[4] X. Yang, J. Zhao, Q. Sun, J. Lu and X. Ma, “An effective dual self-attention residual network for seizure prediction”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 1604-1613, 2021.
[5] Y. Yuan, G. Xun, K. Jia and A. Zhang, “A multi-view deep learning method for epileptic seizure detection using short-time Fourier transform”, Proc. 8th ACM Int. Conf. Bioinf. Comput. Biol. Health Inform., pp. 213-222, Aug. 2017.
[6] C. L. Liu, B. Xiao, W. H. Hsaio and V. S. Tseng, “Epileptic seizure prediction with multi-view convolutional neural networks”, IEEE Access, vol. 7, pp. 170352-1703613, Nov. 2019.
[7] H. Daoud and M. A. Bayoumi, “Efficient epileptic seizure prediction based on deep learning”, IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 5, pp. 804-813, Oct. 2019.
[8] Netoff, T., Park, Y. and Parhi, K., “Seizure Prediction Using Cost-Sensitive Support Vector Machine”, IEEE EMBS, 2009
[9] Zheng, G., Liutao, Y., Feng, Y., Han, Z., Chen, L., Zhang, S., Wang, D. and Han, Z., “Seizure Prediction Model Based on Method of Common Spatial Patterns and Support Vector Machine”, IEEE ICIST. 2012
[10] A. Romney and V. Manian, “Optimizing Seizure Prediction From Reduced Scalp EEG Channels Based on Spectral Features and MAML”, IEEE Access, vol. 9, pp. 164348-164357, Dec. 2021.
[11] P. Mirowski et al., “Classification of patterns of EEG synchronization for seizure prediction”, Clin. Neurophysiol., vol. 120, no. 11, pp. 1927-1940, 2009.
[12] P. Detti, G. Z. M. de Lara, R. Bruni, M. Pranzo, F. Sarnari and G. Vatti, “A patient-specific approach for short-term epileptic seizures prediction through the analysis of EEG synchronization”, IEEE Trans. Biomed. Eng., vol. 66, no. 6, pp. 1494-1504, Jun. 2019.
[13] B. V. Dasarathy and B. V. Sheela, “Composite classifier system design: Concepts and methodology”, Proceedings of the IEEE, vol. 67, 1979, pp. 708-713.
[14] L. Xu, A. Krzyzak, and C. Y. Suen, “Methods of combining multiple classifiers and their applications to handwriting recognition”, IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, no. 3, pp. 418-435, May 1992.
[15] Zhibin Sun, Ni-Bin Chang, Chi-Farn Chen, Chandan Mostafiz, Wei Gao, “Ensemble Learning via Higher Order Singular Value Decomposition for Integrating Data and Classifier Fusion in Water Quality Monitoring”, Selected Topics in Applied Earth Observations and Remote Sensing IEEE Journal of, vol. 14, pp. 3345-3360, 2021.
[16] M. Mohammadpour, M. Ghorbanian and S. Mozaffari, “Comparison of EEG signal features and ensemble learning methods for motor imagery classification”, Proc. 8th Int. Conf. Inf. Knowl. Technol., pp. 288-292, 2016.
[17] K. S. Kamble and J. Sengupta, “Ensemble Machine Learning-Based Affective Computing for Emotion Recognition Using Dual-Decomposed EEG Signals”, IEEE Sensors Journal, vol. 22, no. 3, pp. 2496-2507, 1 Feb.1, 2022
[18] Klem, George H. et al. “The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology”, Electroencephalography and Clinical Neurophysiology, 1999
[19] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David and C. E. Elger, “Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state”, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 64, no. 6, 2001.
[20] Y. Li, X.-D. Wang, M.-L. Luo, K. Li, X.-F. Yang and Q. Guo, “Epileptic seizure classification of EEGs using time–frequency analysis based multiscale radial basis functions”, IEEE J. Biomed. Health Informat., vol. 22, no. 2, pp. 386-397, Mar. 2018.
[21] A. Gupta, P. Singh and M. Karlekar, “A novel signal modeling approach for classification of seizure and seizure-free EEG signals”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 5, pp. 925-935, May 2018.
[22] M. Yazid et al., “Simple Detection of Epilepsy From EEG Signal Using Local Binary Pattern Transition Histogram”, in IEEE Access, vol. 9, pp. 150252-150267, 2021.
[23] Ali Shoeb, “Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment”, PhD Thesis, Massachusetts Institute of Technology, September 2009.
[24] J. R. Quinlan, “Bagging, boosting, and C4.5”, AAAI′96: Proceedings of the thirteenth national conference on Artificial intelligence, vol. 1, pp. 725-730, United States, 1996.
[25] X. Hu, ”Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications”, Proceedings 2001 IEEE International Conference on Data Mining, pp. 233-240, San Jose, CA, USA, 2001.
[26] G. Zenobi, and P. Cunningham, “Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error”, Machine Learning: ECML 2001, 12th European Conference on Machine Learning, vol. 2167, pp. 576-587, Freiburg, Germany, 2001.
[27] L. Breiman, “Bagging predictors”, Machine Learning, vol.24, no.2, pp. 123-140, 1996.
[28] M. Kearns, “Thoughts on Hypothesis Boosting”, Machine Learning Class Project, 1988.
[29] Zoltan J. Koles, Michael S. Lazar, Steven Z. Zhou, “Spatial patterns underlying population differences in the background EEG”, Brain Topography, vol.2,pp. 275-284, 1990.
[30] G. D. Johnson, and D. J. Krusienski, “Computational EEG analysis for brain-computer interfaces”, Computational EEG Analysis, pp. 193-214, Springer, Singapore, 2018.
[31] P. Herman, G. Prasad, T. M. McGinnity and D. Coyle, “Comparative analysis of spectral approaches to feature extraction for eeg-based motor imagery classification”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 16, no. 4, pp. 317-326, 2008.
[32] Y. Park, L. Luo, K. K. Parhi and T. Netoff, “Seizure prediction with spectral power of EEG using cost-sensitive support vector machines”, Epilepsia, vol. 52, no. 10, pp. 1761-1770, 2011.
[33] Z. Zhang and K. K. Parhi, “Low-complexity seizure prediction from iEEG/sEEG using spectral power and ratios of spectral power”, IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 3, pp. 693-706, Jun. 2016.
[34] Keshab K Parhi and Zisheng Zhang, “Discriminative ratio of spectral power and relative power features derived via frequency-domain model ratio with application to seizure prediction”, IEEE transactions on biomedical circuits and systems, vol. 13, no. 4, pp. 645-657, 2019.
[35] P. D. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short modified periodograms”, IEEE Trans. Audio Electroacoust., vol. AU-15, no. 2, pp. 70-73, Jun. 1967.
[36] Lachaux, Jean‐Philippe, “Measuring phase synchrony in brain signals”, Human brain mapping, pp. 194-208, 1999.
[37] G. A. Light et al., “Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients”, Biol. Psychiatry, vol. 60, no. 11, pp. 1231-1240, Dec. 2006.
[38] P. J. Uhlhaas and W. Singer, “Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology”, Neuron, vol. 52, no. 1, pp. 155-168, 2006.
[39] Boser, B. E. & Vapnik, V. N., “A Training Algorithm for Optimal Margin Classifiers”, Proceedings of the 5th Annual Workshop on Computational Learning Theory, pp. 144-152, July. 1992.
[40] Y. Zhang, Y. Guo, P. Yang, W. Chen and B. Lo, “Epilepsy seizure prediction on EEG using common spatial pattern and convolutional neural network”, IEEE J. Biomed. Health Inform., vol. 24, no. 2, pp. 465-474, Feb. 2020.
[41] D. Cho, B. Min, J. Kim and B. Lee, “EEG-based prediction of epileptic seizures using phase synchronization elicited from noise-assisted multivariate empirical mode decomposition”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 8, pp. 1309-1318, Aug. 2017.
[42] T. N. Alotaiby, S. A. Alshebeili, F. M. Alotaibi and S. R. Alrshoud, “Epileptic seizure prediction using CSP and LDA for scalp EEG signals”, Comput. Intell. Neurosci., vol. 2017, no. 6, pp. 1-11, 2017.
[43] A. R. Ozcan and S. Erturk, “Seizure Prediction in Scalp EEG Using 3D Convolutional Neural Networks With an Image-Based Approach”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 11, pp. 2284-2293, Nov. 2019.
[44] A. Romney and V. Manian, “Comparison of frontal-temporal channels in epilepsy seizure prediction based on EEMD-ReliefF and DNN”, Computers, vol. 9, no. 4, pp. 78, Sep. 2020.
[45] L. Tang, N. Xie, M. Zhao and X. Wu, “Seizure Prediction Using Multi-View Features and Improved Convolutional Gated Recurrent Network”, IEEE Access, vol. 8, pp. 172352-172361, 2020
[46] X. Yang, J. Zhao, Q. Sun, J. Lu and X. Ma, “An Effective Dual Self-Attention Residual Network for Seizure Prediction”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 1604-1613, 2021
[47] Y. Gao et al., “Pediatric Seizure Prediction in Scalp EEG Using a Multi-Scale Neural Network With Dilated Convolutions”, IEEE Journal of Translational Engineering in Health and Medicine, vol. 10, pp. 1-9, 2022
指導教授 徐國鎧(Kuo-Kai Shyu) 審核日期 2022-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明