博碩士論文 109521093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.22.79.181
姓名 董凱仁(Kai-Jen Tung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於共空間模式與黎曼流形之即時腦波多分類
(Common Spatial Patterns and Riemannian Manifold based Real-Time Classification of Multiclass EEG)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-19以後開放)
摘要(中) 本論文基於共空間模式(Common Spatial Patterns, CSP)與黎曼流形(Riemannian Manifold)切線空間映射(Tangent Space Mapping, TSM),用於腦電訊號(Electroencephalography, EEG)多分類任務上。藉由濾波器組(Filter Bank)與共變異數矩陣(Covariance Matrix)計算出各個通道間的頻譜功率,再用共空間模式與黎曼流形的切線空間映射分別提取特徵,最後透過基於支持向量機(Support Vector Machine, SVM)的新型分類器分類。資料集使用BCI competition IV 2a想像運動(Motor Imagery, MI)四分類準確率達到78.55%,BCI competition III 3a想像運動四分類準確率達到83.33%,自行錄製之想像運動四分類準確率達到57.44%,自行錄製之實際運動四分類準確率達到81.25%。
摘要(英) This paper is based on common spatial patterns (CSP) and Riemannian Manifold tangent space mapping (TSM) for Electroencephalography (EEG) of multiclass classification tasks. The spectral power between each channel is calculated by the filter bank and the covariance matrix, and then the features are extracted by the CSP and TSM respectively, and finally the new classifier based on Support Vector Machine (SVM) is used to classify. The datasets used BCI competition IV 2a motor imagery (MI) four-classes accuracy rate achieved 78.55%, BCI competition III 3a MI four-classes accuracy rate achieved 83.33%, self-recorded MI four-classes accuracy rate achieved 57.44%, self-recorded motor movement four-classes accuracy rate achieved 81.25%.
關鍵字(中) ★ 腦電圖
★ 腦機介面
★ 想像運動
★ 多分類
★ 共空間模式
★ 黎曼流形切線空間
關鍵字(英) ★ EEG
★ brain-computer interface
★ motor imagery
★ multiclass class-ification
★ common spatial patterns
★ Riemann tangent space
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第1章 緒論 1
1-1前言 1
1-2研究動機與目的 1
1-3文獻回顧 2
1-4內容大綱 5
第2章 腦電訊號 6
2-1腦波訊號頻帶介紹 6
2-2大腦功能區介紹 6
2-3 EEG資料庫 8
2-3-1 BCI競賽IV 2a資料集[22] 8
2-3-2 BCI競賽III 3a資料集[23] 9
2-3-3 自行錄製之腦波資料集 11
2-4 自行錄製腦波軟硬體介紹 12
第3章 演算法原理與分析 14
3-1演算法架構 14
3-2資料前處理 15
3-3濾波器組頻帶選擇 17
3-4特徵提取 19
3-4-1黎曼流形切線空間映射 19
3-4-2 共空間模式 24
3-5分類 26
第4章 實驗結果與討論 29
4-1本論文提出之DFBTSM-CSP架構演進過程實驗結果 29
4-2頻帶篩選演算法效果分析 33
4-3本論文提出之架構與其他方法準確率比較 34
第5章 即時控制系統設計與應用 47
5-1腦波即時控制系統介紹 47
5-2錄製腦波詳細流程 48
5-3即時分類流程及Demo影片 50
5-4硬體耗時比較 51
第6章 結論與未來展望 52
6-1結論 52
6-2未來展望 52
參考文獻 53
參考文獻 [1] Jonathan R. Wolpaw, Niels Birbaumer, Dennis J, McFarland, Gert Pfurtscheller, Theresa M. Vaughan, ‘‘Brain-computer interfaces for communication and control,’’ Clinical Neurophysiology, 2021.
[2] Rümeysa ince, Saliha Seda Adanır1, Fatma Sevmez, ‘‘The inventor of electroencephalography (EEG): Hans Berger,’’ Child’s Nervous System, 2020.
[3] Muhammad Yazid, Fahmi Fahmi, Erwin Sutanto, Wervyan Shalannanda, Ruhush Shoalihin, Gwo-Jiun Horng, Aripriharta, ‘‘Simple Detection of Epilepsy From EEG Signal Using Local Binary Pattern Transition Histogram,’’ IEEE Access, vol. 9, pp. 150252-150267, 2021.
[4] Baoguo Xu, Zhiwei Wei, Aiguo Song, Changcheng Wu, Dalin Zhang, Wenlong Li, Guozheng Xu, Huijun Li, Hong Zeng, ‘‘Phase Synchronization Information for Classifying Motor Imagery EEG From the Same Limb,’’ IEEE Access, vol. 7, pp. 153842-153852, 2019.
[5] V. K. Benzy, A. P. Vinod, R. Subasree, Suvarna Alladi, K. Raghavendra, ‘‘Motor Imagery Hand Movement Direction Decoding Using Brain Computer Interface to Aid Stroke Recovery and Rehabilitation,’’ IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 12, pp. 3051-3062, 2020.
[6] Yulu Hu, Lianming Wang, Wei Fu, ‘‘EEG Feature Extraction of Motor Imagery Based on WT and STFT,’’ 2018 IEEE International Conference on Information and Automation (ICIA), pp. 83-88, 2018.
[7] Baoguo Xu, Linlin Zhang, Aiguo Song, Changcheng Wu, Wenlong Li , Dalin Zhang , Guozheng Xu , Huijun Li, Hong Zeng , ‘‘Wavelet Transform Time-Frequency Image and Convolutional Network-Based Motor Imagery EEG Classification,’’ IEEE Access, vol. 7, pp. 6084-6093, 2019.
[8] H. Ramoser, J. Muller-Gerking, G. Pfurtscheller, ‘‘Optimal spatial filtering of single trial EEG during imagined hand movement,’’ IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 4, pp. 441-446, 2000.
[9] Quadrianto Novi, Cuntai Guan, Tran Huy Dat, Ping Xue, ‘‘Sub-band Common Spatial Pattern (SBCSP) for Brain-Computer Interface,’’ 2007 3rd International IEEE/EMBS Conference on Neural Engineering, pp. 204-207, 2007.
[10] Kai Keng Ang, Zheng Yang Chin, Haihong Zhang, Cuntai Guan, ‘‘Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface,’’ 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2390-2397, 2008.
[11] Kavitha P. Thomas, Cuntai Guan, Chiew Tong Lau, A. P. Vinod, Kai Keng Ang, ‘‘A New Discriminative Common Spatial Pattern Method for Motor Imagery Brain–Computer Interfaces,’’ IEEE Transactions on Biomedical Engineering, vol. 56, no. 11, pp. 2730-2733, 2009.
[12] Shiu Kumar, Alok Sharma, Tatsuhiko Tsunoda, ‘‘An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information,’’ BMC Bioinformatics 18, 2017.
[13] Ranran Zhang, Xiaoyan Xiao, Zhi Liu, Wei Jiang, Jianwen Li, Yankun Cao, Jianmin Ren, Dongmei Jiang, Lizhen Cui, ‘‘A New Motor Imagery EEG Classification Method FB-TRCSP+RF Based on CSP and Random Forest,’’ IEEE Access, vol. 6, pp. 44944-44950, 2018.
[14] Hongtao Wang, Tao Xu, Cong Tang, Hongwei Yue, Chuangquan Chen, Linfeng Xu, Zian Pei, Jiajun Dong, Anastasios Bezerianos, Jiajun Dong, ‘‘Diverse Feature Blend Based on Filter-Bank Common Spatial Pattern and Brain Functional Connectivity for Multiple Motor Imagery Detection,’’ IEEE Access, vol. 8, pp. 155590-155601, 2020.
[15] Yangyang Miao, Jing Jin, Ian Daly, Cili Zuo, Xingyu Wang, Andrzej Cichocki, Tzyy-Ping Jung, ‘‘Learning Common Time-Frequency-Spatial Patterns for Motor Imagery Classification,’’ IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 699-707, 2021.
[16] Yimin Hou, Tao Chen, Xiangmin Lun, Fang Wang, ‘‘A novel method for classification of multi-class motor imagery tasks based on feature fusion,’’ Neuroscience Research, vol. 176, pp. 40-48, 2022.
[17] Alexandre Barachant, Stephane Bonnet, Marco Congedo, Christian Jutten, ‘‘Riemannian geometry applied to BCI classification,’’ International Conference on Latent Variable Analysis and Signal Separation, pp.629-636, 2010.
[18] Alexandre Barachant, Stéphane Bonnet, Marco Congedo, Christian Jutten, ‘‘Multiclass Brain–Computer Interface Classification by Riemannian Geometry,’’ IEEE Transactions on Biomedical Engineering, vol. 59, no. 4, pp. 920-928, 2012.
[19] Md Rabiul Islam, Toshihisa Tanaka, Md Khademul Islam Molla, ‘‘Multiband tangent space mapping and feature selection for classification of EEG during motor imagery,’’ J. Neural Eng, 2018.
[20] P. Yang, J. Wang, H. Zhao and R. Li, ‘‘MLP With Riemannian Covariance for Motor Imagery Based EEG Analysis,’’ IEEE Access, vol. 8, pp. 139974-139982, 2020.
[21] G. Pfurtscheller, C. Neuper, D. Flotzinger, and M. Pregenzer, ‘‘EEG-based discrimination between imagination of right and left hand movement,’’ Electroencephalography and Clinical Neurophysiology, vol. 103, no. 6, pp. 642–651, 1997.
[22] C. Brunner, R. Leeb, G. R. Müller − Putz, A. Schlögl, and G. Pfurtscheller, ‘‘BCI Competition 2008 – Graz data set A,’’ Institute for Human-Computer Interfaces, Graz University of Technology, 2008.
[23] Blankertz B, Müller KR, Krusienski DJ, Schalk G, Wolpaw JR, Schlögl A, Pfurtscheller G, Millán Jdel R, Schröder M, Birbaumer N, ‘‘The BCI competition. III: Validating alternative approaches to actual BCI problems,’’ IEEE Trans Neural Syst Rehabil Eng, 2006.
[24] G. Pfurtscheller, ‘‘Functional brain imaging based on ERD/ERS,’’ Vision Search, vol. 41, pp. 1257-1260, 2001.
[25] X. J. Wang, ‘‘Neurophysiological and computational principles of cortical rhythms in cognition,’’ Physiological Reviews, vol. 90, no. 3, pp. 1195-1268, 2010.
[26] G.Klem, H. Lüders, H. Jasper, C. Elger, ‘‘The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology,’’ Electroencephalography and Clinical Neurophysiology, 1999.
[27] Alexander Kraskov, Harald Stögbauer, Peter Grassberger, ‘‘Estimating mutual information,’’ Physical Review, 2004.
[28] A. Rocha and S. K. Goldenstein, ‘‘Multiclass From Binary: Expanding One-Versus-All, One-Versus-One and ECOC-Based Approaches,’’ IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 2, pp. 289-302, 2014.
[29] Y. H. Liu, S. Huang and Y.-D. Huang, ‘‘Motor imagery EEG classification for patients with amyotrophic lateral sclerosis using fractal dimension and Fisher’s criterion-based channel selection,’’ Sensors, vol. 17, July 2017.
指導教授 徐國鎧(Kuo-Kai Shyu) 審核日期 2022-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明