參考文獻 |
A. 中文文獻
陳冠吟. (2017). 決策樹、羅吉斯迴歸與類神經網路預測員工績效之比較研究 [國立中央 大學]. 收入 人力資源管理研究所: 卷 碩士. https://hdl.handle.net/11296/krcn8e
戴師勇. (2017). 員工離職預測分析之研究:以某會計師事務所審計部門為例 [東吳大 學]. 收入 巨量資料管理學院碩士學位學程: 卷 碩士. https://hdl.handle.net/11296/3863w4 房美玉. (2020). 第 2 課 招募與甄選. 收入 人力資源管理的 12 堂課(全新內容經典珍藏 版) (頁 p.37-38). 遠見天下文化出版股份有限公司.
黃國政. (2006). 運用文字探勘技術於人才招募推薦系統之研究 [靜宜大學]. 收入 資訊管 理學系研究所: 卷 碩士. https://hdl.handle.net/11296/5ffn3g
黃詩涵. (2020). 運用資料探勘技術建立員工晉升之預測模型 [國立中央大學]. 收入 人力 資源管理研究所在職專班: 卷 碩士. https://hdl.handle.net/11296/6ma266
黃同圳. (2020). 第 5 課 招募與甄選. 收入 人力資源管理的 12 堂課(全新內容經典珍藏 版) (頁 p.148-149). 遠見天下文化出版股份有限公司.
劉清彬. (2012). 運用資料探勘於人力銀行配對機制之研究 [世新大學]. 收入 資訊傳播學 研究所(含碩專班): 卷 碩士. https://hdl.handle.net/11296/q6s35z
徐晟熏. (2015). 資料探勘(Data mining)-在人力資源管理上的分析與應用 [國立中央大 學]. 收入 人力資源管理研究所: 卷 碩士. https://hdl.handle.net/11296/p36932
B. 英文文獻
Almalis, N. D., Tsihrintzis, G. A., Karagiannis, N., & Strati, A. D. (2015). FoDRA — A new content-based job recommendation algorithm for job seeking and recruiting. 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA), 1–7. https://doi.org/10.1109/IISA.2015.7388018
Anderson, P., & Pulich, M. (2000). Recruiting Good Employees in Tough Times. The Health Care Manager, 18(3). https://journals.lww.com/healthcaremanagerjournal/Fulltext/2000/18030/Recruiting_Good_E mployees_in_Tough_Times.5.aspx
Bao, L., Xing, Z., Xia, X., Lo, D., & Li, S. (2017). Who Will Leave the Company?: A Large- Scale Industry Study of Developer Turnover by Mining Monthly Work Report. 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), 170–181. https://doi.org/10.1109/MSR.2017.58
Barber, A. (1998). Recruiting Employees: Individual and Organizational Perspectives. https://doi.org/10.4135/9781452243351
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
38
de Jesus, A. C. C., Júnior, M. E. G. D., & Brandão, W. C. (2018). Exploiting linkedin to predict employee resignation likelihood. Proceedings of the 33rd Annual ACM Symposium on Applied Computing, 1764–1771. https://doi.org/10.1145/3167132.3167320
Faliagka, E., Iliadis, L., Karydis, I., Rigou, M., Sioutas, S., Tsakalidis, A., & Tzimas, G. (2014). On-line consistent ranking on e-recruitment: Seeking the truth behind a well-formed CV. Artificial Intelligence Review, 42(3), 515–528. https://doi.org/10.1007/s10462-013-9414- y
Harsha, B. S., Varaprasad, A. J., & Sujith, L. V. N. P. S. (2020). EARLY PREDICTION OF EMPLOYEE ATTRITION. International Journal of Scientific & Technology Research, 9(3), 3374–3379.
Juan, C., Yong, W., & Zhang, H. (2015). Research on the effects of EAPs on turnover intentions. 2015 12th International Conference on Service Systems and Service Management (ICSSSM), 1–5. https://doi.org/10.1109/ICSSSM.2015.7170158
Kirimi, J. M., & Moturi, C. A. (2016). Application of data mining classification in employee performance prediction. International journal of computer applications, 146(7), 28–35.
Liu, J., Long, Y., Fang, M., He, R., Wang, T., & Chen, G. (2018). Analyzing Employee Turnover Based on Job Skills. Proceedings of the International Conference on Data Processing and Applications, 16–21. https://doi.org/10.1145/3224207.3224209
Long, Y., Liu, J., Fang, M., Wang, T., & Jiang, W. (2018). Prediction of Employee Promotion Based on Personal Basic Features and Post Features. Proceedings of the International Conference on Data Processing and Applications, 5–10. https://doi.org/10.1145/3224207.3224210
McKenna, E. F., & Beech, N. (1995). The essence of human resource management. Prentice Hall.
Pessach, D., Singer, G., Avrahami, D., Chalutz Ben-Gal, H., Shmueli, E., & Ben-Gal, I. (2020). Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming. Decision Support Systems, 134, 113290. https://doi.org/10.1016/j.dss.2020.113290
Platt, J. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. https://www.microsoft.com/en-us/research/publication/sequential-minimal- optimization-a-fast-algorithm-for-training-support-vector-machines/
Qian, X., & Ohwada, H. (2018). Application of Data Mining Classification in Job-Changing. Proceedings of the 2018 10th International Conference on Machine Learning and Computing, 107–110. https://doi.org/10.1145/3195106.3195136
Robbins, S. P., & Judge, T. A. (2017). Essentials of Organizational Behavior, eBook, Global Edition (14 本). Pearson Education. https://books.google.com.tw/books?id=5x8uDwAAQBAJ Saradhi, V. V., & Palshikar, G. K. (2011). Employee churn prediction. Expert Systems with Applications, 38(3), 1999–2006. https://doi.org/10.1016/j.eswa.2010.07.134
39
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Siting, Z., Wenxing, H., Ning, Z., & Fan, Y. (2012). Job recommender systems: A survey. 2012 7th International Conference on Computer Science & Education (ICCSE), 920–924. https://doi.org/10.1109/ICCSE.2012.6295216
Sudha, G., K, S. K., S, S. J., D, N., S, S., & G, K. T. (2021). Personality Prediction Through CV Analysis using Machine Learning Algorithms for Automated E-Recruitment Process. 2021 4th International Conference on Computing and Communications Technologies (ICCCT), 617–622. https://doi.org/10.1109/ICCCT53315.2021.9711787
Suthaharan, S. (2016). Support Vector Machine. 收入 S. Suthaharan (編輯), Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning (頁 207–235). Springer US. https://doi.org/10.1007/978-1-4899-7641-3_9 Webb, G. I. (2010). Naïve Bayes. 收入 C. Sammut & G. I. Webb (編輯), Encyclopedia of Machine Learning (頁 713–714). Springer US. https://doi.org/10.1007/978-0-387-30164- 8_576 |