博碩士論文 109423005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:13.59.241.75
姓名 徐筱茜(Hsiao-Chein Hsu)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 使用文字探勘與深度學習技術建置中風後肺炎之預測模型
(Develop The Predictive Model For Post Stroke Pneumonia By Using Text Mining And Deep Learning)
相關論文
★ 電子病歷縮寫消歧與一對多分類任務
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 腦中風是全球重大的健康問題之一,為全球人類死亡的第二大主因,且中風造成失能 的後遺症,是我國成人殘障的主因之一。中風相關性肺炎(Stroke-associated pneumonia, SAP) 是急性中風 (Acute ischemic stroke, AIS)患者預後的一個重要臨床問題,大多數的中風患者會 有不同程度的活動障礙,例如吞嚥困難使吸入性肺炎風險增加了七倍,三分之一的 AIS 患者 患有肺炎,是最常見的呼吸系統併發症,SAP 與造成長期死亡率增加、住院時間延長、醫療 費用上升和預後功能下降密切相關。
本研究主要目的為加入深度學習技術入文字探勘萃取出非結構化電子病歷中可能影響 SAP 之新關鍵字作爲變數,並運用機器學習技術來為這些變數建構中風後肺炎的早期預測模 型,比較非結構化資料與結構化資料所建立之預測模型的預測效能差異,透過此研究模型預 測 AIS 患者於住院期間是否有併發肺炎風險,協助醫師做精準判斷並。
本研究使用嘉義基督教醫院由 2007 年 5 月至 2020 年 9 月共 941 名缺血性中風患者 之病人入院當日之中文 EMR 護理紀錄與中風登錄資料庫作為研究資料,其中之非結構化資 料運用六項技術進行特徵工程,包含 TFIDF、Doc2Vec、Bidirectional Encoder Representations from Transformers (BERT) 、 BioBERT 、 Bio_Clinical Bert 和 MetaMap 搭 配 UMLS Metathesaurus 與 Term Frequency,產生之文本特徵與結構特徵使用八項機器學習方法包含 包含支持向量機、單純貝氏分類器、K-近鄰演算法、邏輯斯迴歸、決策樹、隨機森林、極限 梯度提升、 輕量梯度提升進行建模預測及結果比較。
結果發現 1. 加入非結構化文本特徵合併結構特徵結構化來建構模型,將會提升單純 使用結構特徵或非結構文本特徵建構模型之預測效果,AUC 分別提升 1%和 9%。2.加入深度 學習技術於結合非結構化文本特徵工程,詞嵌入效果將於 AUC 上相比使用傳統特徵工程方 法有 1%之提升 3.使用基於生物醫學語料庫預訓練之 BioBERT 模型和基於醫學臨床紀錄預訓 練之 Bio_Clinical Bert 模型來作為此任務之非結構化 EMR 特徵工程技術,將比基於一 般語料 庫預訓練之 BERT 之詞嵌入,在後續建模上有更好之預測效果,AUC 分別提升 9%和 8%。 4.極限梯度學習 XGB 為中風後肺炎預測模型最適合機器學習分類器,以上有助於提升中風後 肺炎模型之預測性能,給予臨床醫師更準確之決策支援。
摘要(英) Stroke is one of the major health problems and the second leading cause of human death in the world. The disability sequelae caused by stroke is one of the main causes of adult disability in Taiwan. Stroke-associated pneumonia (SAP) is an important clinical problem in the prognosis of patients with acute stroke (AIS). Most stroke patients will suffer from varying degrees of mobility impairment. Dysphagia for example, seven times increased the risk of aspiration pneumonia. Thus, pneumonia is the most common respiratory complication which occurs in one- third of patients with AIS. SAP is closely associated with increased long-term mortality, prolonged hospital stays, increased healthcare costs, and decreased prognostic function.
The main purpose of this study is to add deep learning and text mining techniques to extract new risk factor that may affect SAP in unstructured electronic medical records (EMR). And then apply them to construct a model for predicting the risk of pneumonia complicated by AIS patients during hospitalization. It assists doctors in diagnosing accurately.
This study used Chinese EMR and stroke registration database from 2007-2017 from Chia- Yi Christian Hospital. In total, 941 eligible patients with AIS were used to build and evaluate the models. The unstructured data used six techniques for feature engineering, including TFIDF, Doc2Vec, MetaMap, Bidirectional Encoder Representations from Transformers (BERT), BERT for Biomedical Text Mining (BioBERT), BERT for Clinical Text Mining (Bio_Clinical Bert). Eight machine learning methods including support vector machine, simple Bayesian classifier, K-Nearest Neighbor algorithm, logistic regression, Decision Tree, Random Forest, Extreme Gradient Boosting, and Light Gradient Boosting Machine were implemented for developing models and comparing predictive result.
The results show that adding unstructured text features and combining structural features to construct prediction model achieved better performance than model constructed by simply using structural features or unstructured text features. In addition, Deep learning feature engineering technology achieved better embedding effect better than traditional feature engineering methods. Using the BioBERT and Bio_Clinical Bert model which is pre-trained based on biomedical corpus and medical clinical records as the unstructured EMR feature engineering technology for this task enabled subsequent modeling to achieve better performance than using BERT general corpus- based model. In all investigated classification techniques, extreme gradient boosting is the most suitable machine learning classifier for the prediction model of post-stroke pneumonia.
關鍵字(中) ★ 腦中風
★ 肺炎
★ 文字探勘
★ 機器學習
★ 深度學習
★ 電子醫療紀錄
關鍵字(英) ★ stroke
★ pneumonia
★ text mining
★ machine learning
★ deep learning
★ EMR
論文目次 摘要 .................................................................................................................................................................................... i Abstract............................................................................................................................................................................ii 致謝 ................................................................................................................................................................................. iv 圖目錄 ........................................................................................................................................................................... vii 表目錄 ..........................................................................................................................................................................viii 第一章、緒論................................................................................................................................................................1
1.1 研究背景..............................................................................................................................................................1 1.2 研究動機..............................................................................................................................................................3 1.3 研究目的..............................................................................................................................................................4
第二章、文獻探討 ......................................................................................................................................................5 2.1 電子病歷於臨床決策支援系統之相關研究...........................................................................................5 2.2 AIS 與 SAP 預測之相關研究......................................................................................................................9
第三章、研究方法 ....................................................................................................................................................14 3.1 資料來源............................................................................................................................................................16 3.2 自變數定義 (結構化資料部分)..................................................................................................................16
3.3 非結構化資料前處理....................................................................................................................................24
3.3.1 EMR 文本翻譯..........................................................................................................................................24 3.3.2 EMR 文字前處理.....................................................................................................................................24
3.4 文本特徵工程 ..................................................................................................................................................26
3.4.1 Term Frequency-Inverse document frequency (TFIDF).............................................................26 3.4.2 Doc2Vec (D2V)...........................................................................................................................................27 3.4.3 MetaMap......................................................................................................................................................28 3.4.4 Bert................................................................................................................................................................33
目錄
v
3.4.5 BioBERT......................................................................................................................................................34 3.4.6 Bio_Clinical Bert.......................................................................................................................................34
3.5 分類技術............................................................................................................................................................35
3.6 預測模型評估指標.........................................................................................................................................38 第四章、實驗評估 ....................................................................................................................................................40 4.1 實驗設計與分析技術....................................................................................................................................40
4.2 實驗結果............................................................................................................................................................42
4.2.1 實驗 1 ...........................................................................................................................................................42 4.2.2 實驗 2 ...........................................................................................................................................................46 4.2.3 實驗 3 ...........................................................................................................................................................51 4.2.4 實驗 4 ...........................................................................................................................................................51
4.3 討論 ......................................................................................................................................................................54 第五章、研究結論與建議 ......................................................................................................................................62 5.1 研究結論............................................................................................................................................................62 5.2 研究限制............................................................................................................................................................63 5.3 未來研究方向與建議....................................................................................................................................63 參考文獻........................................................................................................................................................................65
參考文獻 [1] A natural language processing and deep learning approach to identify child abuse from pediatric electronic medical records | PLOS ONE. (n.d.). Retrieved May 16, 2022, from https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247404
[2] Almeida, F., & Xexéo, G. (2019). Word Embeddings: A Survey. ArXiv:1901.09069 [Cs, Stat]. http://arxiv.org/abs/1901.09069
[3] Alpert, J. S. (2019). The Electronic Medical Record: Beauty and the Beast. The American Journal of Medicine, 132(4), 393–394. https://doi.org/10.1016/j.amjmed.2018.12.004
[4] Alsentzer, E., Murphy, J. R., Boag, W., Weng, W.-H., Jin, D., Naumann, T., & McDermott, M. B. A. (2019). Publicly Available Clinical BERT Embeddings. ArXiv:1904.03323 [Cs]. http://arxiv.org/abs/1904.03323
[5] Angraal, S., Mortazavi, B. J., Gupta, A., Khera, R., Ahmad, T., Desai, N. R., Jacoby, D. L., Masoudi, F. A., Spertus, J. A., & Krumholz, H. M. (2020). Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction. JACC: Heart Failure, 8(1), 12–21. https://doi.org/10.1016/j.jchf.2019.06.013
[6] Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! A systematic comparison of context-counting vs. Context-predicting semantic vectors. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 238–247. https://doi.org/10.3115/v1/P14-1023
[7] Bin Basri, H., & Ali, R. (2003). Risk factors and complications of acute ischaemic stroke patients at Hospital Universiti Kebangsaan Malaysia (HUKM). The Medical Journal of Malaysia, 58, 499–505.
[8] Blinov, P., Avetisian, M., Kokh, V., Umerenkov, D., & Tuzhilin, A. (2020). Predicting Clinical Diagnosis from Patients Electronic Health Records Using BERT-based Neural Networks. ArXiv:2007.07562 [Cs], 12299, 111–121. https://doi.org/10.1007/978-3-030-59137-3_11
[9] Bodenreider, O. (2004). The Unified Medical Language System (UMLS): Integrating biomedical terminology. Nucleic Acids Research, 32(suppl_1), D267–D270. https://doi.org/10.1093/nar/gkh061
[10] Chao, G.-L., & Lane, I. (2019). BERT-DST: Scalable End-to-End Dialogue State Tracking with Bidirectional Encoder Representations from Transformer. ArXiv:1907.03040 [Cs]. http://arxiv.org/abs/1907.03040
[11] Chumbler, N. R., Williams, L. S., Wells, C. K., Lo, A. C., Nadeau, S., Peixoto, A. J., Gorman, M., Boice, J. L., Concato, J., & Bravata, D. M. (2010). Derivation and Validation of a Clinical System for Predicting Pneumonia in Acute Stroke.Neuroepidemiology, 34(4), 193–199.https://doi.org/10.1159/000289350
[12] Collum, T. H., Menachemi, N., & Sen, B. (2016). Does electronic health record use improve hospital financial performance? Evidence from panel data. Health Care Management Review, 41(3), 267–274. https://www.jstor.org/stable/48516225
[13] Daniels, S. K., Ballo, L. A., Mahoney, M.-C., & Foundas, A. L. (2000). Clinical predictors of dysphagia and aspiration risk: Outcome measures in acute stroke patients. Archives of Physical Medicine and Rehabilitation, 81(8), 1030–1033. https://doi.org/10.1053/apmr.2000.6301
[14] Data Processing and Text Mining Technologies on Electronic Medical Records: A Review. (n.d.). Retrieved May 16, 2022, from https://www.hindawi.com/journals/jhe/2018/4302425/
[15] Dept. of Computer and Systems Sciences, Stockholm University, Sweden, Weegar, R., F Nygård, J., The Cancer Registry of Norway, Dalianis, H., & Dept. of Computer and Systems Sciences, Stockholm University, Sweden. (2017). Efficient Encoding of Pathology Reports Using Natural Language Processing. RANLP 2017 - Recent Advances in Natural Language Processing Meet Deep Learning, 778–783. https://doi.org/10.26615/978-954-452-049-6_100
[16] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805
[17] Dysphagia in stroke patients | Postgraduate Medical Journal. (n.d.). Retrieved May 16, 2022, from https://pmj.bmj.com/content/82/968/383.short
[18] Edgcomb, J. B., & Zima, B. (2019). Machine Learning, Natural Language Processing, and the Electronic Health Record: Innovations in Mental Health Services Research. Psychiatric Services (Washington, D.C.), 70(4), 346–349. https://doi.org/10.1176/appi.ps.201800401
[19] Ehrentraut, C., Ekholm, M., Tanushi, H., Tiedemann, J., & Dalianis, H. (2018). Detecting hospital-acquired infections: A document classification approach using support vector machines and gradient tree boosting. Health Informatics Journal, 24(1), 24–42. https://doi.org/10.1177/1460458216656471
[20] Fan, J., Ma, X., Wu, L., Zhang, F., Yu, X., & Zeng, W. (2019). Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agricultural Water Management, 225, 105758. https://doi.org/10.1016/j.agwat.2019.105758
[21] Finlayson, O., Kapral, M., Hall, R., Asllani, E., Selchen, D., & Saposnik, G. (2011). Risk factors, inpatient care, and outcomes of pneumonia after ischemic stroke. Neurology, 77(14), 1338– 1345. https://doi.org/10.1212/WNL.0b013e31823152b1
[22] Friedant, A. J., Gouse, B. M., Boehme, A. K., Siegler, J. E., Albright, K. C., Monlezun, D. J.,George, A. J., Beasley, T. M., & Martin-Schild, S. (2015). A Simple Prediction Score for Developing a Hospital-Acquired Infection after Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases : The Official Journal of National Stroke Association, 24(3), 680– 686. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.11.014
[23] Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, N., Peters, M., Schmitz, M., & Zettlemoyer, L. (2018). AllenNLP: A Deep Semantic Natural Language Processing Platform (arXiv:1803.07640). arXiv. https://doi.org/10.48550/arXiv.1803.07640
[24] Ge, Y., Wang, Q., Wang, L., Wu, H., Peng, C., Wang, J., Xu, Y., Xiong, G., Zhang, Y., & Yi, Y. (2019). Predicting post-stroke pneumonia using deep neural network approaches. International Journal of Medical Informatics, 132, 103986. https://doi.org/10.1016/j.ijmedinf.2019.103986
[25] Gilmer, T. P., O’Connor, P. J., Sperl-Hillen, J. M., Rush, W. A., Johnson, P. E., Amundson, G. H., Asche, S. E., & Ekstrom, H. L. (2012). Cost-effectiveness of an electronic medical record based clinical decision support system. Health Services Research, 47(6), 2137–2158. https://doi.org/10.1111/j.1475-6773.2012.01427.x
[26] Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). KNN Model-Based Approach in Classification. In R. Meersman, Z. Tari, & D. C. Schmidt (Eds.), On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE (pp. 986–996). Springer. https://doi.org/10.1007/978-3-540-39964-3_62
[27] Harms, H., Grittner, U., Dröge, H., & Meisel, A. (2013). Predicting post-stroke pneumonia: The PANTHERIS score. Acta Neurologica Scandinavica, 128(3), 178–184. https://doi.org/10.1111/ane.12095
[28] Helmy, T. A., Abd-Elhady, M. A.-E., & Abdou, M. (2016). Prediction of Ischemic Stroke- Associated Pneumonia: A Comparison between 3 Scores. Journal of Stroke and Cerebrovascular Diseases, 25(11), 2756–2761. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.07.030
[29] Hinton, G. E., McCLELLAND, J. L., & Rumelhart, D. E. (n.d.). Distributed Representations. 33.
[30] Hoffmann, S., Malzahn, U., Harms, H., Koennecke, H.-C., Berger, K., Kalic, M., Walter, G., Meisel, A., Heuschmann, P. U., & Berlin Stroke Register and the Stroke Register of Northwest Germany. (2012). Development of a clinical score (A2DS2) to predict pneumonia in acute ischemic stroke. Stroke, 43(10), 2617–2623. https://doi.org/10.1161/STROKEAHA.112.653055
[31] Howard, J., & Ruder, S. (2018). Universal Language Model Fine-tuning for Text Classification (arXiv:1801.06146). arXiv. https://doi.org/10.48550/arXiv.1801.06146
[32] Irving, J., Patel, R., Oliver, D., Colling, C., Pritchard, M., Broadbent, M., Baldwin, H., Stahl, D., Stewart, R., & Fusar-Poli, P. (2021). Using Natural Language Processing on Electronic Health Records to Enhance Detection and Prediction of Psychosis Risk. Schizophrenia Bulletin, 47(2), 405–414. https://doi.org/10.1093/schbul/sbaa126
[33] Ji, R., Shen, H., Pan, Y., Wang, P., Liu, G., Wang, Y., Li, H., & Wang, Y. (2013). Novel Risk Score to Predict Pneumonia After Acute Ischemic Stroke. Stroke, 44(5), 1303–1309. https://doi.org/10.1161/STROKEAHA.111.000598
[34] JMIR Medical Informatics—The Unified Medical Language System at 30 Years and How It Is Used and Published: Systematic Review and Content Analysis. (n.d.). Retrieved May 16, 2022, from https://medinform.jmir.org/2021/8/e20675
[35] Johnson, W., Onuma, O., Owolabi, M., & Sachdev, S. (2016). Stroke: A global response is needed. Bulletin of the World Health Organization, 94(9), 634-634A. https://doi.org/10.2471/BLT.16.181636
[36] Journal of Medical Internet Research—Artificial Intelligence–Based Prediction of Lung Cancer Risk Using Nonimaging Electronic Medical Records: Deep Learning Approach. (n.d.). Retrieved May 16, 2022, from https://www.jmir.org/2021/8/e26256/
[37] Jwa, H., Oh, D., Park, K., Kang, J. M., & Lim, H. (2019). exBAKE: Automatic Fake News Detection Model Based on Bidirectional Encoder Representations from Transformers (BERT). Applied Sciences, 9(19), 4062. https://doi.org/10.3390/app9194062
[38] Kammersgaard, L. P., Jørgensen, H. S., Reith, J., Nakayama, H., Houth, J. G., Weber, U. J., Pedersen, P. M., & Olsen, T. S. (2001). Early infection and prognosis after acute stroke: The Copenhagen Stroke Study. Journal of Stroke and Cerebrovascular Diseases, 10(5), 217–221. https://doi.org/10.1053/jscd.2001.30366
[39] Katzan, I. L., Cebul, R. D., Husak, S. H., Dawson, N. V., & Baker, D. W. (2003). The effect of pneumonia on mortality among patients hospitalized for acute stroke. Neurology, 60(4), 620– 625. https://doi.org/10.1212/01.wnl.0000046586.38284.60
[40] Katzan, I. L., Dawson, N. V., Thomas, C. L., Votruba, M. E., & Cebul, R. D. (2007). The cost
of pneumonia after acute stroke. Neurology, 68(22), 1938–1943. https://doi.org/10.1212/01.wnl.0000263187.08969.45
[41] Kwon, H.-M., Jeong, S.-W., Lee, S.-H., & Yoon, B.-W. (2006). The pneumonia score: A simple grading scale for prediction of pneumonia after acute stroke. American Journal of Infection Control, 34(2), 64–68. https://doi.org/10.1016/j.ajic.2005.06.011
[42] Le, Q. V., & Mikolov, T. (2014). Distributed Representations of Sentences and Documents. ArXiv:1405.4053 [Cs]. http://arxiv.org/abs/1405.4053
[43] Li, X., Wu, M., Sun, C., Zhao, Z., Wang, F., Zheng, X., Ge, W., Zhou, J., & Zou, J. (2020). Using machine learning to predict stroke-associated pneumonia in Chinese acute ischaemic stroke patients. European Journal of Neurology, 27(8), 1656–1663. https://doi.org/10.1111/ene.14295
[44] Logistic Regression—ProQuest. (n.d.). Retrieved May 16, 2022, from https://www.proquest.com/openview/e8e7564d6f02ac54d757f3b74422f0ef/1?pq- origsite=gscholar&cbl=30764
[45] McCann, B., Bradbury, J., Xiong, C., & Socher, R. (2017). Learned in Translation: Contextualized Word Vectors. Advances in Neural Information Processing Systems, 30. https://proceedings.neurips.cc/paper/2017/hash/20c86a628232a67e7bd46f76fba7ce12- Abstract.html
[46] Medical Complications After Stroke | Stroke. (n.d.). Retrieved May 16, 2022, from https://www.ahajournals.org/doi/full/10.1161/01.STR.31.6.1223
[47] Mehrabi, S. (2016). Advanced natural language processing and temporal mining for clinical discovery. https://doi.org/10.7912/C2DW2W
[48] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. ArXiv:1301.3781 [Cs]. http://arxiv.org/abs/1301.3781
[49] Miller, R. H., & Sim, I. (2004). Physicians’ Use Of Electronic Medical Records: Barriers And Solutions. Health Affairs, 23(2), 116–126. https://doi.org/10.1377/hlthaff.23.2.116
[50] Ningrum, D. N. A., Kung, W.-M., Tzeng, I.-S., Yuan, S.-P., Wu, C.-C., Huang, C.-Y., Muhtar, M. S., Nguyen, P.-A., Li, J. Y.-C., & Wang, Y.-C. (2021). A Deep Learning Model to Predict Knee Osteoarthritis Based on Nonimage Longitudinal Medical Record. Journal of Multidisciplinary Healthcare, 14, 2477–2485. https://doi.org/10.2147/JMDH.S325179
[51] Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565– 1567. https://doi.org/10.1038/nbt1206-1565
[52] O’Donnell, M. J., Chin, S. L., Rangarajan, S., Xavier, D., Liu, L., Zhang, H., Rao-Melacini, P., Zhang, X., Pais, P., Agapay, S., Lopez-Jaramillo, P., Damasceno, A., Langhorne, P., McQueen, M. J., Rosengren, A., Dehghan, M., Hankey, G. J., Dans, A. L., Elsayed, A., ... Yusuf, S. (2016). Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): A case-control study. The Lancet, 388(10046), 761–775. https://doi.org/10.1016/S0140-6736(16)30506-2
[53] Opportunities and challenges in developing deep learning models using electronic health records data: A systematic review | Journal of the American Medical Informatics Association
| Oxford Academic. (n.d.). Retrieved May 16, 2022, from https://academic.oup.com/jamia/article/25/10/1419/5035024?login=false
[54] Paisitkriangkrai, S., Shen, C., & Van Den Hengel, A. (2013). Efficient Pedestrian Detection by Directly Optimizing the Partial Area under the ROC Curve. 1057–1064. https://openaccess.thecvf.com/content_iccv_2013/html/Paisitkriangkrai_Efficient_Pedestrian_ Detection_2013_ICCV_paper.html
[55] Peng, Y., Yan, S., & Lu, Z. (2019). Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets (arXiv:1906.05474). arXiv. https://doi.org/10.48550/arXiv.1906.05474
[56] Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543. https://doi.org/10.3115/v1/D14-1162
[57] Raghavan, P., Chen, J. L., Fosler-Lussier, E., & Lai, A. M. (2014). How essential are unstructured clinical narratives and information fusion to clinical trial recruitment? AMIA Summits on Translational Science Proceedings, 2014, 218–223. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333685/
[58]Random Forests | SpringerLink. (n.d.). Retrieved May 16, 2022, from https://link.springer.com/article/10.1023/a:1010933404324
[59] Saqib, M., Sha, Y., & Wang, M. D. (2018). Early Prediction of Sepsis in EMR Records Using Traditional ML Techniques and Deep Learning LSTM Networks. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 4038–4041. https://doi.org/10.1109/EMBC.2018.8513254
[60] Sarkar, B., Sinhababu, N., Roy, M., Pramanik, P. K. D., & Choudhury, P. (2020). Mining multilingual and multiscript Twitter data: Unleashing the language and script barrier. International Journal of Business Intelligence and Data Mining, 16(1), 107–127. https://doi.org/10.1504/IJBIDM.2020.103847
[61] Shivade, C., Raghavan, P., Fosler-Lussier, E., Embi, P. J., Elhadad, N., Johnson, S. B., & Lai, A. M. (2014). A review of approaches to identifying patient phenotype cohorts using electronic health records. Journal of the American Medical Informatics Association : JAMIA, 21(2), 221– 230. https://doi.org/10.1136/amiajnl-2013-001935
[62] Singh, T., Nayyar, A., & Solanki, A. (2020). Multilingual Opinion Mining Movie Recommendation System Using RNN (p. 605). https://doi.org/10.1007/978-981-15-3369-3_44
[63] Smith, C. J., Bray, B. D., Hoffman, A., Meisel, A., Heuschmann, P. U., Wolfe, C. D. A., Tyrrell, P. J., & Rudd, A. G. (2015). Can a Novel Clinical Risk Score Improve Pneumonia Prediction in Acute Stroke Care? A UK Multicenter Cohort Study. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, 4(1), e001307. https://doi.org/10.1161/JAHA.114.001307
[64] Sun, W., Cai, Z., Liu, F., Fang, S., & Wang, G. (2017). A survey of data mining technology on electronic medical records. 2017 IEEE 19th International Conference on E-Health Networking, Applications and Services (Healthcom), 1–6. https://doi.org/10.1109/HealthCom.2017.8210774
[65] Sung, M., Hahn, S., Han, C. H., Lee, J. M., Lee, J., Yoo, J., Heo, J., Kim, Y. S., & Chung, K. S.(2021). Event Prediction Model Considering Time and Input Error Using Electronic Medical Records in the Intensive Care Unit: Retrospective Study. JMIR Medical Informatics, 9(11), e26426. https://doi.org/10.2196/26426
[66] Tayefi, M., Ngo, P., Chomutare, T., Dalianis, H., Salvi, E., Budrionis, A., & Godtliebsen, F. (2021). Challenges and opportunities beyond structured data in analysis of electronic health records. WIREs Computational Statistics, 13(6), e1549. https://doi.org/10.1002/wics.1549
[67] Teh, W. L., Abdin, E., Vaingankar, J. A., Seow, E., Sagayadevan, V., Shafie, S., Shahwan, S., Zhang, Y., Chong, S. A., Ng, L. L., & Subramaniam, M. (2018). Prevalence of stroke, risk factors, disability and care needs in older adults in Singapore: Results from the WiSE study. BMJ Open, 8(3), e020285. https://doi.org/10.1136/bmjopen-2017-020285
[68] Validation of claims-based algorithms for pulmonary arterial hypertension—Ravikanth Papani, Gulshan Sharma, Amitesh Agarwal, Sean J. Callahan, Winston J. Chan, Yong-Fang Kuo, Yun M. Shim, Andrew D. Mihalek, Alexander G. Duarte, 2018. (n.d.). Retrieved May 16, 2022, from https://journals.sagepub.com/doi/full/10.1177/2045894018759246
[69] Walsh, C. G., Ribeiro, J. D., & Franklin, J. C. (2018). Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 59(12), 1261–1270. https://doi.org/10.1111/jcpp.12916
[70] Westendorp, W. F., Nederkoorn, P. J., Vermeij, J.-D., Dijkgraaf, M. G., & de Beek, D. van. (2011). Post-stroke infection: A systematic review and meta-analysis. BMC Neurology, 11(1), 110. https://doi.org/10.1186/1471-2377-11-110
[71] Westendorp, W. F., Vermeij, J.-D., Hilkens, N. A., Brouwer, M. C., Algra, A., van der Worp, H. B., Dippel, D. W., van de Beek, D., & Nederkoorn, P. J. (2018). Development and internal validation of a prediction rule for post-stroke infection and post-stroke pneumonia in acute stroke patients. European Stroke Journal, 3(2), 136–144. https://doi.org/10.1177/2396987318764519
[72] XGBoost | Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (n.d.). Retrieved May 16, 2022, from https://dl.acm.org/doi/abs/10.1145/2939672.2939785
[73] Zhang, W., Wu, C., Zhong, H., Li, Y., & Wang, L. (2021). Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geoscience Frontiers, 12(1), 469–477. https://doi.org/10.1016/j.gsf.2020.03.007
[74] Zhang, X., Yu, S., Wei, L., Ye, R., Lin, M., Li, X., Li, G., Cai, Y., & Zhao, M. (2016). The A2DS2 Score as a Predictor of Pneumonia and In-Hospital Death after Acute Ischemic Stroke
in Chinese Populations. PLOS ONE, 11(3), e0150298. https://doi.org/10.1371/journal.pone.0150298
[75] Quyet, D., Hien, N. M., Khan, M. X., Dai, P. D., Thuan, D. D., Duc, D. M., Hai, N. D., Nam, B.V., Huy, P. Q., Ton, M. D., Truong, D. T., Nga, V. T., & Duc, D. P. (2019). Risk Factors for Stroke Associated Pneumonia. Open Access Macedonian Journal of Medical Sciences, 7(24), 4416–4419. https://doi.org/10.3889/oamjms.2019.873
[76] Bijani, B., Mozhdehipanah, H., Jahanihashemi, H., & Azizi, S. (2014). The impact of pneumonia on hospital stay among patients hospitalized for acute stroke. Neurosciences (Riyadh, Saudi Arabia), 19(2), 118–123.
指導教授 胡雅涵 曾筱珽(Ya-Han Hu Hsiao-Ting Tseng) 審核日期 2022-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明