博碩士論文 108521073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:3.12.163.105
姓名 賴郡廷(Chun-Ting Lai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於n77頻段之氮化鎵多悌功率放大器暨應用於C頻段之連續F類氮化鎵功率放大器暨應用於C頻段之堆疊式互補式金氧半導體功率放大器之研製
(Implementations on n77-band GaN Doherty Power Amplifier, C-band Class F Continuous Mode GaN Power Amplifier and C-band CMOS Stacked Power Amplifier)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文將介紹三顆應用於第五代行動通訊之功率放大器,其中兩顆為使用穩懋半導體公司WINTM 0.25-μm GaN/SiC製程設計應用於n77頻段之多悌功率放大器以及應用於C頻段之連續F類功率放大器,第三顆為使用tsmcTM 0.18-μm互補式金氧半導體設計應用於C頻段之堆疊式功率放大器。三個晶片皆完成實作與量測,包含散射參數、大訊號量以及使用5G NR FR1調變訊號量測,皆以最適合的偏壓與預失真方式來讓各個電路有最好的電路特性。
第二章將介紹一顆應用於n77頻段之氮化鎵多悌功率放大器,該電路使用變壓器來設計輸出匹配電路來改善多悌負載調變之頻寬較小的問題,而在輸入端採用不等功率分配器來增加功率回退區之功率附加效率。量測結果顯示電路的大訊號頻寬為2.8 GHz至3.6 GHz,比例頻寬為25%,最佳傳輸增益為9.09 dB。在大訊號量測中由於量測的限制,無法提供完整的數據,在量測到的數據顯示頻帶內飽和輸出功率為34.5至35.5 dBm,效率為30至40.2%;而在6-dB功率回退時效率為20.7至22.8%。該晶片之總面積為9 mm2,其中核心部分為5.63 mm2。調變訊號量測顯示在輸入功率為22 dBm時使用DPD加上CFR,可以使放大器的輸出訊號有最好的EVM與輸出功率表現。
第三章將介紹一顆應用於C頻段之連續F類氮化鎵功率放大器,透過挑選偏壓之方式改善其AM-AM之線性度。在輸出匹配上利用三個共振腔達到連續F類之匹配特性,實現寬頻高效率之功率放大器,而輸入方面利用兩個共振腔之帶通濾波器來增加電路在輸入匹配中的頻寬。量測結果顯示電路的大訊號頻寬為4至5.4 GHz,比例頻寬29.8%,最佳傳輸增益為15.02 dB。大訊號量測結果顯示頻帶內飽和輸出功率為36.4至37.8 dBm,效率為21.4至28.06%,而增益壓縮1-dB時之輸出功率為30.4至35 dBm,效率為17至28%,該晶片之總面積為5 mm2。調變訊號量測顯示輸入功率為18 dBm時使用DPD加上CFR,可以使放大器的輸出訊號有最好的EVM與輸出功率表現。
第四章將介紹一顆應用於C頻段之堆疊式互補式金氧半導體功率放大器,此放大器使用一組堆疊式驅動級放大器來推兩組差動之功率級堆疊式放大器。其中輸入匹配,級間匹配與輸出匹配皆使用變壓進行設計來提升電路整體的頻寬。量測結果顯示本電路之大訊號頻寬橫跨n77至n79之頻帶,比例頻寬為51%,最大傳輸增益為17.07 dB。大訊號量測結果顯示頻帶內飽和輸出功率為23.04至24.73 dBm,效率為8至11.42%,而增益壓縮1dB時之輸出功率為20.4至22 dBm,晶片面積為3.685 mm2。調變訊號量測顯示在輸入功率為7 dBm時使用DPD,可以使放大器的輸出訊號有最好的EVM與輸出功率表現。
摘要(英) This thesis presents three chips for 5th generation communication system applications. Two of them were designed in WINTM 0.25-μm GaN/SiC, the first one is a Doherty power amplifier (DPA) for n77-band apllications, the second one is a continuous class-F power amplifier for C-band applications. The third PA was a stacked power amplifier fabricated in tsmcTM 0.18-μm CMOS for C-band applications. All three chips have been implemented and measured, including scattering parameters, large signal, and 5G NR FR1 modulation signal measurements. The chips were using the optimized bias conditions and pre-distortion methods to make each circuit have the best circuit performances.
Chapter 2 presents an n77-band GaN DPA, by utilizing transformers to its output matching network, it improves the bandwidth of the DPA. To improve the power added efficiency (PAE) at the power back-off (OPBO) operation condition, an unequal power splliter was adapted at the input of the PA. The measurements achieve a peak power gain of 9.09 dB, a bandwidth of 2.8 to 3.6 GHz, a fractional bandwidth (FBW) is 25%. Due to the limit on large signal measuments, the DPA was unable to achive its saturation output power. According to the measured data, the saturation power is 34.5 to 35.5 dBm and the maximun PAE is 30 to 40.2%, the PAE at 6-dB OPBO is 20.7 to 22.8% in the operation band. The chip area is 9 mm2 which core area is 5.63 mm2. The modulaion measurement result shows that the best EVM performance at 22-dBm input power by using DPD and CFR techniques.
Chapter 3 presents a C-band class-F continuous mode GaN PA. By analyzing the large signal transconductance (Gm), the appropriate gate bias was selected to improve AM-AM linearity. To achieve class-F continuous mode operation, three resonators were applied at the output matching network. On the other hand, a band pass filter with two resonators were used at the input matching network for wide band operation. The measurements achieve a peak power gain of 15.02 dB, a bandwidth of 4.0 to 5.4 GHz, and a fractional bandwidth (FBW) of 29.8%. The measured large signal performances show that a saturation power of 36.4 to 37.8 dBm, a maximun PAE of 21.4 to 28%, an output 1-dB compression power of 30.4 to 35 dBm, and a PAE of 17 to 28 %. The chip area is 5 mm2. The modulaion measurement shows that the PA achieves the best EVM at 18-dBm input power by using DPD and CFR techniques.
Chapter 4 presents a C-band CMOS stacked PA which uses a set of stacked driver cell to drive two differential stacked power cell. All of the matching network were designed with transformers to achieve broadband frequency response. The measurements achieve a peak power gain of 17.07 dB, a bandwidth of 3.2 to 5.4 GHz, a fractional bandwidth (FBW) of 51%. The measured large signal performances show that a saturation power of 23.04 to 24.73 dBm, a maximun PAE of 8 to 11.42%, an output 1-dB compression power of 20.4 to 22 dBm. The chip area is 3.685 mm2. Modulaion measurement shows that the PA presents the best EVM at 7-dBm input power by using DPD technique.
關鍵字(中) ★ 功率放大器
★ 多悌功率放大器
★ 連續模式功率放大器
★ 堆疊式功率放大器
★ 第五代行動通訊
關鍵字(英) ★ Power Amplifier
★ Doherty PA
★ Continuous mode PA
★ Stacked PA
★ 5G NR
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 ix
表目錄 xv
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 多悌功率放大器 3
2-1 多悌功率放大器研究現況 3
2-2 功率放大器操作簡介 4
2-2-1 功率放大器操作簡介 4
2-2-2 增加功率放大器之功率回退效率的方法 8
2-2-3 多悌功率放大器 10
2-3 應用於n77頻段之氮化鎵多悌功率放大器 18
2-3-1 電路架構圖 18
2-3-2 變壓器設計多悌輸出匹配電路 20
2-3-3 輸入匹配與不等功率分配枝幹耦合器 29
2-3-4 電路模擬與量測結果 33
2-3-5 結果比較與討論 49
第三章 連續模式功率放大器 52
3-1 連續模式功率放大器研究近況 52
3-2 連續模式功率放大器介紹 53
3-2-1 傳統的B類與F類功率放大器 53
3-2-2 連續模式B類與J類功率放大器 54
3-2-3 連續模式F類功率放大器 57
3-3 應用於C頻段之連續F類氮化鎵功率放大器 59
3-3-1 電路圖架構圖 59
3-3-2 電晶體特性評估 60
3-3-3 輸出匹配設計 65
3-3-4 輸入匹配設計 74
3-3-5 電路模擬與量測結果 80
3-3-6 結果比較與討論 98
第四章 堆疊式功率放大器 101
4-1 互補式金氧半導體功率放大器研究近況 101
4-2 堆疊式功率放大器介紹 102
4-2-1 堆疊式功率放大器之架構與原理 102
4-2-2 堆疊式功率放大器與並聯式功率放大器之比較 104
4-2-3 電感性磁耦合共振腔變壓器介紹 105
4-3 應用於C頻段之堆疊式互補式金氧半功率放大器 110
4-3-1 電路架構圖 110
4-3-2 輸出匹配設計 116
4-3-3 級間匹配與輸入匹配設計 121
4-3-4 電路模擬與量測結果 127
4-3-5 結果比較與討論 144
第五章 結論 146
5-1 總結 146
5-2 未來方向 147
參考文獻 149
參考文獻 [1] W. H. Doherty, "A new high efficiency power amplifier for modulated waves," Proceedings of the Institute of Radio Engineers, vol. 24, no. 9, pp. 1163-1182, Sept. 1936.
[2] J. Moon, J. Kim, J. Kim, I. Kim and B. Kim, "Efficiency enhancement of Doherty amplifier through mitigation of the knee voltage effect," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 1, pp. 143-152, Jan. 2011.
[3] S. Jee, J. Lee, B. Park, C. H. Kim and B. Kim, "GaN MMIC broadband Doherty power amplifier," in Asia-Pacific Microwave Conference Proceedings (APMC), 2013, pp. 603-605.
[4] S. Jee et al., "Asymmetric broadband Doherty power amplifier using GaN MMIC for femto-cell base-station," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 9, pp. 2802-2810, Sept. 2015.
[5] D. Gustafsson, J. C. Cahuana, D. Kuylenstierna, I. Angelov, N. Rorsman and C. Fager, "A wideband and compact GaN MMIC Doherty amplifier for microwave link applications," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 2, pp. 922-930, Feb. 2013.
[6] S. -H. Li, S. S. H. Hsu, J. Zhang and K. -C. Huang, "Design of a compact GaN MMIC Doherty power amplifier and system level analysis with X-parameters for 5G communications," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5676-5684, Dec. 2018.
[7] G. Lv, W. Chen, X. Liu, F. M. Ghannouchi and Z. Feng, "A fully integrated C-band GaN MMIC Doherty power amplifier with high efficiency and compact size for 5G application," IEEE Access, vol. 7, pp. 71665-71674, 2019.
[8] G. Lv, W. Chen, X. Liu, Long Chen and Z. Feng, "A fully integrated C-band GaN MMIC Doherty power amplifier with high gain and high efficiency for 5G application, " in 2019 IEEE MTT-S International Microwave Symposium (IMS),2019 pp. 560-563
[9] H. Lee et al., "Highly efficient fully integrated GaN-HEMT Doherty power amplifier based on compact load network," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 12, pp. 5203-5211, Dec. 2017.
[10] D. Gustafsson, J. C. Cahuana, D. Kuylenstierna, I. Angelov and C. Fager, "A GaN MMIC modified Doherty PA with large bandwidth and reconfigurable efficiency," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 3006-3016, Dec. 2014.
[11] G. Nikandish, R. B. Staszewski and A. Zhu, "Bandwidth enhancement of GaN MMIC Doherty power amplifiers using broadband transformer-based load modulation network," IEEE Access, vol. 7, pp. 119844-119855, 2019.
[12] G. Nikandish, R. B. Staszewski and A. Zhu, "Breaking the bandwidth limit: a review of broadband Doherty power amplifier design for 5G," IEEE Microwave Magazine, vol. 21, no. 4, pp. 57-75, April 2020.
[13] 邱煥凱,「微波積體電路設計」,通訊元件教學推廣中心主編,民國96年3月。
[14] Khaled Bathich, "Analysis and design of efficiency-enhancement microwave power amplifiers using the Doherty technique," Technische Universität Berlin, TU Berlin, doctoral thesis, July, 2013.
[15] H. Wang, C. Sideris and A. Hajimiri, "A CMOS broadband power amplifier with a transformer-based high-order output matching network," IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2709-2722, Dec. 2010.
[16] A. Barakat, M. Thian, V. Fusco, S. Bulja and L. Guan, "Toward a more generalized Doherty power amplifier design for broadband operation," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 3, pp. 846-859, March 2017.
[17] R. Joshi, M. -H. Liu and S. S. H. Hsu, "A high efficiency compact Class F GaN MMIC power amplifier for 5G applications," in 2020 50th European Microwave Conference (EuMC), 2021, pp. 1103-1106.
[18] G. R. Nikandish, R. B. Staszewski and A. Zhu, "A fully integrated reconfigurable multimode Class-F2,3 GaN power amplifier," IEEE Solid-State Circuits Letters, vol. 3, pp. 270-273, 2020.
[19] B. Liu, M. Mao, C. C. Boon, P. Choi, D. Khanna and E. A. Fitzgerald, "A fully integrated Class-J GaN MMIC power amplifier for 5-GHz WLAN 802.11ax application," IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 434-436, May 2018.
[20] T. Senju, K. Takagi and H. Kimura, "A 2 W 45 % PAE X-Band GaN HEMT Class-F MMIC power amplifier," in 2018 Asia-Pacific Microwave Conference (APMC), 2018, pp. 956-958.
[21] G. Nikandish, R. B. Staszewski and A. Zhu, "Design of highly linear broadband continuous mode GaN MMIC power amplifiers for 5G," IEEE Access, vol. 7, pp. 57138-57150, 2019.
[22] Y. Xu, X. Wang and A. Zhu, "Design of broadband continuous mode MMIC power amplifiers with bandwidth improvement," in 2021 IEEE MTT-S International Wireless Symposium (IWS), 2021, pp. 1-3.
[23] G. Nikandish, R. B. Staszewski and A. Zhu, "A broadband continuous Class-F GaN MMIC PA using multi-resonance matching network," in 2019 14th European Microwave Integrated Circuits Conference (EuMIC), 2019, pp. 108-111.
[24] G. R. Nikandish, A. Nasri, A. Yousefi, A. Zhu and R. B. Staszewski, "A broadband fully integrated power amplifier using waveform shaping multi-resonance harmonic matching network," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 1, pp. 2-15, Jan. 2022.
[25] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees and J. Benedikt, "On the continuity of high efficiency modes in linear RF power amplifiers," IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 665-667, Oct. 2009
[26] N. Tuffy, L. Guan, A. Zhu and T. J. Brazil, "A simplified broadband design methodology for linearized high-efficiency continuous Class-F power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1952-1963, June 2012.
[27] P. Wright, J. Lees, J. Benedikt, P. J. Tasker and S. C. Cripps, "A methodology for realizing high efficiency Class-J in a linear and broadband PA," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3196-3204, Dec. 2009.
[28] T. Sharma, R. Darraji and F. Ghannouchi, "High efficiency continuous mode power amplifiers using waveform engineering," in Proceedings of 2014 Mediterranean Microwave Symposium (MMS2014), 2014, pp. 1-4.
[29] P. J. Tasker, V. Carrubba, P. Wright, J. Lees, J. Benedikt and S. Cripps, "Wideband PA design: the "continuous" mode of operation," in 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2012, pp. 1-4.
[30] V. Carrubba et al., "On the extension of the continuous Class-F mode power amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1294-1303, May 2011.
[31] V. Carrubba et al., "The continuous Class-F mode power amplifier," in The 5th European Microwave Integrated Circuits Conference, 2010, pp. 432-435.
[32] 陳冠州,「應用於 n77 頻段之氮化鎵/砷化鎵積體被動元件多悌功率放大器暨使用 B 類連續技術於 C/Ka頻帶氮化鎵/砷化鎵功率放大器之研製」,國立中央大學,碩士論文,民國110年。
[33] G. R. Nikandish, R. B. Staszewski and A. Zhu, "Broadband fully integrated GaN power amplifier with minimum-inductance BPF matching and two-transistor AM-PM compensation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4211-4223, Dec. 2020.
[34] T. Yao et al., "Algorithmic Design of CMOS LNAs and PAs for 60-GHz radio," IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[35] C. Lin and H. Chang, "A broadband injection-locking Class-E power amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3232-3242, Oct. 2012.
[36] S. A. Z. Murad, R. K. Pokharel, A. I. A. Galal, R. Sapawi, H. Kanaya and K. Yoshida, "An excellent gain flatness 3.0–7.0 GHz CMOS PA for UWB applications," IEEE Microwave and Wireless Components Letters, vol. 20, no. 9, pp. 510-512, Sept. 2010.
[37] S. Wong, S. Maisurah, M. N. Osman, F. Kung and J. See, "High efficiency CMOS power amplifier for 3 to 5 GHz ultra-wideband (UWB) application," IEEE Transactions on Consumer Electronics, vol. 55, no. 3, pp. 1546-1550, August 2009.
[38] H. Wang, C. Sideris and A. Hajimiri, "A CMOS broadband power amplifier with a transformer-based high-order output matching network," IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2709-2722, Dec. 2010.
[39] H. -F. Wu, Q. -F. Cheng, X. -G. Li and H. -P. Fu, "Analysis and design of an ultrabroadband stacked power amplifier in CMOS technology," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 1, pp. 49-53, Jan. 2016.
[40] B. Ku, S. Baek and S. Hong, "A wideband transformer-coupled CMOS power amplifier for X-band multifunction chips," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 6, pp. 1599-1609, June 2011.
[41] J. -H. Tsai, "Design of a 5.2-GHz CMOS power amplifier using TF-based 2-Stage dual-radial power splitting/combining architecture," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 10, pp. 3690-3699, Oct. 2019.
[42] Y. Dong, L. Mao and S. Xie, "Fully integrated Class-J power amplifier in standard CMOS technology," IEEE Microwave and Wireless Components Letters, vol. 27, no. 1, pp. 64-66, Jan. 2017.
[43] J. -K. Nai, Y. -H. Hsiao, Y. Wang, F. Chen and H. Wang, "5-GHz transformer combined class-F−1 power amplifier," in 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2016, pp. 1-3.
[44] Y. Yamashita, D. Kanemoto, H. Kanaya, R. K. Pokharel and K. Yoshida, "A CMOS class-E power amplifier of 40-% PAE at 5 GHz for constant envelope modulation system," in 2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2013, pp. 66-68.
[45] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[46] Y. Kim and Y. Kwon, "Analysis and design of millimeter-wave power amplifier using stacked-FET structure," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 2, pp. 691-702, Feb. 2015.
[47] C. Li, C. Kuo and M. Kuo, "A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18-μm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[48] Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of electric circuits, " The McGraw-Hill Companies, Inc. 2009.
[49] 紀品瑜,「應用 J 類連續模式技術於 Ka 頻段砷化鎵與 C頻段氮化鎵功率放大器之研製」,國立中央大學,碩士論文,民國109年。
[50] 賴俐妏,「應用於X/Ka 頻段之互補式金氧半導體寬頻中性化功率放大器暨應用低阻抗二元功率結合技術與多蒂架構於X 頻帶氮化鎵功率放大器之研製」,國立中央大學,碩士論文,民國107年。
[51] 宋韋旻,「應用於 C/X 頻段與 802.11ac 規格暨整合電流模態邏輯除頻器之低功耗寬頻 IQ 發射機」,國立中央大學,碩士論文,民國106年。
指導教授 邱煥凱 審核日期 2022-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明