參考文獻 |
[1] W. H. Doherty, "A new high efficiency power amplifier for modulated waves," Proceedings of the Institute of Radio Engineers, vol. 24, no. 9, pp. 1163-1182, Sept. 1936.
[2] J. Moon, J. Kim, J. Kim, I. Kim and B. Kim, "Efficiency enhancement of Doherty amplifier through mitigation of the knee voltage effect," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 1, pp. 143-152, Jan. 2011.
[3] S. Jee, J. Lee, B. Park, C. H. Kim and B. Kim, "GaN MMIC broadband Doherty power amplifier," in Asia-Pacific Microwave Conference Proceedings (APMC), 2013, pp. 603-605.
[4] S. Jee et al., "Asymmetric broadband Doherty power amplifier using GaN MMIC for femto-cell base-station," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 9, pp. 2802-2810, Sept. 2015.
[5] D. Gustafsson, J. C. Cahuana, D. Kuylenstierna, I. Angelov, N. Rorsman and C. Fager, "A wideband and compact GaN MMIC Doherty amplifier for microwave link applications," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 2, pp. 922-930, Feb. 2013.
[6] S. -H. Li, S. S. H. Hsu, J. Zhang and K. -C. Huang, "Design of a compact GaN MMIC Doherty power amplifier and system level analysis with X-parameters for 5G communications," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5676-5684, Dec. 2018.
[7] G. Lv, W. Chen, X. Liu, F. M. Ghannouchi and Z. Feng, "A fully integrated C-band GaN MMIC Doherty power amplifier with high efficiency and compact size for 5G application," IEEE Access, vol. 7, pp. 71665-71674, 2019.
[8] G. Lv, W. Chen, X. Liu, Long Chen and Z. Feng, "A fully integrated C-band GaN MMIC Doherty power amplifier with high gain and high efficiency for 5G application, " in 2019 IEEE MTT-S International Microwave Symposium (IMS),2019 pp. 560-563
[9] H. Lee et al., "Highly efficient fully integrated GaN-HEMT Doherty power amplifier based on compact load network," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 12, pp. 5203-5211, Dec. 2017.
[10] D. Gustafsson, J. C. Cahuana, D. Kuylenstierna, I. Angelov and C. Fager, "A GaN MMIC modified Doherty PA with large bandwidth and reconfigurable efficiency," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 3006-3016, Dec. 2014.
[11] G. Nikandish, R. B. Staszewski and A. Zhu, "Bandwidth enhancement of GaN MMIC Doherty power amplifiers using broadband transformer-based load modulation network," IEEE Access, vol. 7, pp. 119844-119855, 2019.
[12] G. Nikandish, R. B. Staszewski and A. Zhu, "Breaking the bandwidth limit: a review of broadband Doherty power amplifier design for 5G," IEEE Microwave Magazine, vol. 21, no. 4, pp. 57-75, April 2020.
[13] 邱煥凱,「微波積體電路設計」,通訊元件教學推廣中心主編,民國96年3月。
[14] Khaled Bathich, "Analysis and design of efficiency-enhancement microwave power amplifiers using the Doherty technique," Technische Universität Berlin, TU Berlin, doctoral thesis, July, 2013.
[15] H. Wang, C. Sideris and A. Hajimiri, "A CMOS broadband power amplifier with a transformer-based high-order output matching network," IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2709-2722, Dec. 2010.
[16] A. Barakat, M. Thian, V. Fusco, S. Bulja and L. Guan, "Toward a more generalized Doherty power amplifier design for broadband operation," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 3, pp. 846-859, March 2017.
[17] R. Joshi, M. -H. Liu and S. S. H. Hsu, "A high efficiency compact Class F GaN MMIC power amplifier for 5G applications," in 2020 50th European Microwave Conference (EuMC), 2021, pp. 1103-1106.
[18] G. R. Nikandish, R. B. Staszewski and A. Zhu, "A fully integrated reconfigurable multimode Class-F2,3 GaN power amplifier," IEEE Solid-State Circuits Letters, vol. 3, pp. 270-273, 2020.
[19] B. Liu, M. Mao, C. C. Boon, P. Choi, D. Khanna and E. A. Fitzgerald, "A fully integrated Class-J GaN MMIC power amplifier for 5-GHz WLAN 802.11ax application," IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 434-436, May 2018.
[20] T. Senju, K. Takagi and H. Kimura, "A 2 W 45 % PAE X-Band GaN HEMT Class-F MMIC power amplifier," in 2018 Asia-Pacific Microwave Conference (APMC), 2018, pp. 956-958.
[21] G. Nikandish, R. B. Staszewski and A. Zhu, "Design of highly linear broadband continuous mode GaN MMIC power amplifiers for 5G," IEEE Access, vol. 7, pp. 57138-57150, 2019.
[22] Y. Xu, X. Wang and A. Zhu, "Design of broadband continuous mode MMIC power amplifiers with bandwidth improvement," in 2021 IEEE MTT-S International Wireless Symposium (IWS), 2021, pp. 1-3.
[23] G. Nikandish, R. B. Staszewski and A. Zhu, "A broadband continuous Class-F GaN MMIC PA using multi-resonance matching network," in 2019 14th European Microwave Integrated Circuits Conference (EuMIC), 2019, pp. 108-111.
[24] G. R. Nikandish, A. Nasri, A. Yousefi, A. Zhu and R. B. Staszewski, "A broadband fully integrated power amplifier using waveform shaping multi-resonance harmonic matching network," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 1, pp. 2-15, Jan. 2022.
[25] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees and J. Benedikt, "On the continuity of high efficiency modes in linear RF power amplifiers," IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 665-667, Oct. 2009
[26] N. Tuffy, L. Guan, A. Zhu and T. J. Brazil, "A simplified broadband design methodology for linearized high-efficiency continuous Class-F power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1952-1963, June 2012.
[27] P. Wright, J. Lees, J. Benedikt, P. J. Tasker and S. C. Cripps, "A methodology for realizing high efficiency Class-J in a linear and broadband PA," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3196-3204, Dec. 2009.
[28] T. Sharma, R. Darraji and F. Ghannouchi, "High efficiency continuous mode power amplifiers using waveform engineering," in Proceedings of 2014 Mediterranean Microwave Symposium (MMS2014), 2014, pp. 1-4.
[29] P. J. Tasker, V. Carrubba, P. Wright, J. Lees, J. Benedikt and S. Cripps, "Wideband PA design: the "continuous" mode of operation," in 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2012, pp. 1-4.
[30] V. Carrubba et al., "On the extension of the continuous Class-F mode power amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1294-1303, May 2011.
[31] V. Carrubba et al., "The continuous Class-F mode power amplifier," in The 5th European Microwave Integrated Circuits Conference, 2010, pp. 432-435.
[32] 陳冠州,「應用於 n77 頻段之氮化鎵/砷化鎵積體被動元件多悌功率放大器暨使用 B 類連續技術於 C/Ka頻帶氮化鎵/砷化鎵功率放大器之研製」,國立中央大學,碩士論文,民國110年。
[33] G. R. Nikandish, R. B. Staszewski and A. Zhu, "Broadband fully integrated GaN power amplifier with minimum-inductance BPF matching and two-transistor AM-PM compensation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4211-4223, Dec. 2020.
[34] T. Yao et al., "Algorithmic Design of CMOS LNAs and PAs for 60-GHz radio," IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[35] C. Lin and H. Chang, "A broadband injection-locking Class-E power amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3232-3242, Oct. 2012.
[36] S. A. Z. Murad, R. K. Pokharel, A. I. A. Galal, R. Sapawi, H. Kanaya and K. Yoshida, "An excellent gain flatness 3.0–7.0 GHz CMOS PA for UWB applications," IEEE Microwave and Wireless Components Letters, vol. 20, no. 9, pp. 510-512, Sept. 2010.
[37] S. Wong, S. Maisurah, M. N. Osman, F. Kung and J. See, "High efficiency CMOS power amplifier for 3 to 5 GHz ultra-wideband (UWB) application," IEEE Transactions on Consumer Electronics, vol. 55, no. 3, pp. 1546-1550, August 2009.
[38] H. Wang, C. Sideris and A. Hajimiri, "A CMOS broadband power amplifier with a transformer-based high-order output matching network," IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2709-2722, Dec. 2010.
[39] H. -F. Wu, Q. -F. Cheng, X. -G. Li and H. -P. Fu, "Analysis and design of an ultrabroadband stacked power amplifier in CMOS technology," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 1, pp. 49-53, Jan. 2016.
[40] B. Ku, S. Baek and S. Hong, "A wideband transformer-coupled CMOS power amplifier for X-band multifunction chips," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 6, pp. 1599-1609, June 2011.
[41] J. -H. Tsai, "Design of a 5.2-GHz CMOS power amplifier using TF-based 2-Stage dual-radial power splitting/combining architecture," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 10, pp. 3690-3699, Oct. 2019.
[42] Y. Dong, L. Mao and S. Xie, "Fully integrated Class-J power amplifier in standard CMOS technology," IEEE Microwave and Wireless Components Letters, vol. 27, no. 1, pp. 64-66, Jan. 2017.
[43] J. -K. Nai, Y. -H. Hsiao, Y. Wang, F. Chen and H. Wang, "5-GHz transformer combined class-F−1 power amplifier," in 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2016, pp. 1-3.
[44] Y. Yamashita, D. Kanemoto, H. Kanaya, R. K. Pokharel and K. Yoshida, "A CMOS class-E power amplifier of 40-% PAE at 5 GHz for constant envelope modulation system," in 2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2013, pp. 66-68.
[45] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[46] Y. Kim and Y. Kwon, "Analysis and design of millimeter-wave power amplifier using stacked-FET structure," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 2, pp. 691-702, Feb. 2015.
[47] C. Li, C. Kuo and M. Kuo, "A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18-μm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[48] Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of electric circuits, " The McGraw-Hill Companies, Inc. 2009.
[49] 紀品瑜,「應用 J 類連續模式技術於 Ka 頻段砷化鎵與 C頻段氮化鎵功率放大器之研製」,國立中央大學,碩士論文,民國109年。
[50] 賴俐妏,「應用於X/Ka 頻段之互補式金氧半導體寬頻中性化功率放大器暨應用低阻抗二元功率結合技術與多蒂架構於X 頻帶氮化鎵功率放大器之研製」,國立中央大學,碩士論文,民國107年。
[51] 宋韋旻,「應用於 C/X 頻段與 802.11ac 規格暨整合電流模態邏輯除頻器之低功耗寬頻 IQ 發射機」,國立中央大學,碩士論文,民國106年。 |