博碩士論文 92522014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.188.113.185
姓名 周泊彥(Bo-Yen Chou)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 尋找在為排比的核醣核酸的共同二級結構特徵區塊之演算法
(An algorithm for finding common secondary structure motifs in unaligned RNA sequences)
相關論文
★ 應用嵌入式系統於呼吸肌肉群訓練儀之系統開發★ 勃起障礙與缺血性心臟病的雙向研究: 以台灣全人口基礎的世代研究
★ 基質輔助雷射脫附飛行時間式串聯質譜儀 微生物抗藥性資料視覺化工具★ 使用穿戴式裝置分析心律變異及偵測心律不整之應用程式
★ 建立一個自動化分析系統用來分析任何兩種疾病之間的關聯性透過世代研究設計以及使用承保抽樣歸人檔★ 青光眼病患併發糖尿病,使用Metformin及Sulfonylurea治療得到中風之風險:以台灣人口為基礎的觀察性研究
★ 利用組成識別和序列及空間特性構成之預測系統來針對蛋白質交互作用上的特殊區段點位進行分析及預測辨識★ 新聞語意特徵擷取流程設計與股價變化關聯性分析
★ 藥物與疾病關聯性自動化分析平台設計與實作★ 建立財務報告自動分析系統進行股價預測
★ 建立一個分析疾病與癌症關聯性的自動化系統★ 基於慣性感測器虛擬鍵盤之設計與實作
★ 一個醫療照護監測系統之實作★ 應用手機開發手握球握力及相關資料之量測
★ 利用關聯分析全面性的搜索癌症關聯疾病★ 全面性尋找類風濕性關節炎之關聯疾病
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 核醣核酸分子參加許多的生化反應,如催化,核醣核酸編接,轉譯和轉錄的調控,和蛋白質的交互作用。生化的功能和核醣核酸的結構有高度相關。在核醣核酸後修飾作用和調控有相同功能的區域會有保留的結構或序列。雖然現有工具可以發現保留的序列根據序列的同源和排比,然而更重要的是尋找共同二級結構特徵區塊和它們的功能。我們要建構一個工具可以偵測保留的結構於核醣核酸。這個工具包涵三個部份分別是預測核醣核酸二級結構,發現重複的結構和分類重複的結構。首先用mfold來預測核醣核酸結構。接下來用後秩陣列去發現重複的結構。最後重複的結構被分類成特徵區塊根據結構長度。
摘要(英) RNA molecules involved with a variety of important biological processes such as catalysis, RNA splicing, regulation of transcription, translation, and protein interactions. These biological function is highly related to the structure folding of an RNA molecule. Studies in RNA such as many trans-acting non-coding RNA genes and cis-acting RNA regulatory elements show that similar functional RNA share conserved structure or sequence. Although there are tools in finding conserved sequence base on sequence homology and alignment, fining common secondary structure motif is not available. We aim to build a tool which can detect structure conservation on RNA sequences. The proposed tool contains three parts which are “predict RNA secondary structure”, “find repeat structures” and “cluster repeat structures”. First, our research use mfold to predict RNA structure. Second, our research use suffix array to find repeat structure. Finally, repeat structures are cluster to motifs by length of the structure. Some case studies are shown to demonstrate there exist structure conservation on some RNA sequence families where sequence variation on these families are high.
關鍵字(中) ★ 特徵區塊
★ 二級結構
★ 核醣核酸
關鍵字(英) ★ secondary structure
★ RNA
★ motif
論文目次 Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Goal 4
Chapter 2 Related Works 5
2.1 Prediction RNA secondary structure 5
2.2 TRANSFAC database 7
2.3 UTRdb and UTRsite 7
2.4 Finding common secondary structure motifs 8
Chapter 3 Method 12
3.1 Predict RNA secondary structure 13
3.2 Find repeat structure 14
3.2.1 Translate structure to sequence type 15
3.2.2 Find repeat substrings by building suffix array 16
3.3 Cluster repeat structure 17
3.3.1 Cluster group 18
3.3.2 Ranking of motifs 24
Chapter 4 Results 29
4.1 Case study I: Iron response element (IRE) 29
4.2 Case study II: Potato virus X cis-acting regulatory element 31
4.3 Case study III: tRNA 32
4.4 Compare our method with RNAProfile and GPR 36
Chapter 5 Conclusions 38
References 41
參考文獻 [1] P. Klaff, D. Riesner, and G. Steger, "RNA structure and the regulation of gene expression," Plant Mol Biol, vol. 32, pp. 89-106, 1996.
[2] S. P. Gygi, Y. Rochon, B. R. Franza, and R. Aebersold, "Correlation between protein and mRNA abundance in yeast," Mol Cell Biol, vol. 19, pp. 1720-30, 1999.
[3] N. K. Gray and M. W. Hentze, "Regulation of protein synthesis by mRNA structure," Mol Biol Rep, vol. 19, pp. 195-200, 1994.
[4] S. R. Eddy, "Non-coding RNA genes and the modern RNA world," Nat Rev Genet, vol. 2, pp. 919-29, 2001.
[5] V. A. Erdmann, M. Z. Barciszewska, M. Szymanski, A. Hochberg, N. de Groot, and J. Barciszewski, "The non-coding RNAs as riboregulators," Nucleic Acids Res, vol. 29, pp. 189-93, 2001.
[6] G. Pavesi, G. Mauri, M. Stefani, and G. Pesole, "RNAProfile: an algorithm for finding conserved secondary structure motifs in unaligned RNA sequences," Nucleic Acids Res, vol. 32, pp. 3258-69, 2004.
[7] J. Gorodkin, S. L. Stricklin, and G. D. Stormo, "Discovering common stem-loop motifs in unaligned RNA sequences," Nucleic Acids Res, vol. 29, pp. 2135-44, 2001.
[8] H. Y. Kim, T. LaVaute, K. Iwai, R. D. Klausner, and T. A. Rouault, "Identification of a conserved and functional iron-responsive element in the 5'-untranslated region of mammalian mitochondrial aconitase," J Biol Chem, vol. 271, pp. 24226-30, 1996.
[9] E. C. Theil, "The iron responsive element (IRE) family of mRNA regulators. Regulation of iron transport and uptake compared in animals, plants, and microorganisms," Met Ions Biol Syst, vol. 35, pp. 403-34, 1998.
[10] M. W. Hentze and L. C. Kuhn, "Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress," Proc Natl Acad Sci U S A, vol. 93, pp. 8175-82, 1996.
[11] J. L. T. Jeremy M. Berg, Lubert Stryer and Neil D. Clarke, Biochemistry: Michelle Julet, 2002.
[12] V. Matys, E. Fricke, R. Geffers, E. Gossling, M. Haubrock, R. Hehl, K. Hornischer, D. Karas, A. E. Kel, O. V. Kel-Margoulis, D. U. Kloos, S. Land, B. Lewicki-Potapov, H. Michael, R. Munch, I. Reuter, S. Rotert, H. Saxel, M. Scheer, S. Thiele, and E. Wingender, "TRANSFAC: transcriptional regulation, from patterns to profiles," Nucleic Acids Res, vol. 31, pp. 374-8, 2003.
[13] F. Mignone, G. Grillo, F. Licciulli, M. Iacono, S. Liuni, P. J. Kersey, J. Duarte, C. Saccone, and G. Pesole, "UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs," Nucleic Acids Res, vol. 33, pp. D141-6, 2005.
[14] C. Witwer, S. Rauscher, I. L. Hofacker, and P. F. Stadler, "Conserved RNA secondary structures in Picornaviridae genomes," Nucleic Acids Res, vol. 29, pp. 5079-89, 2001.
[15] I. L. Hofacker, M. Fekete, C. Flamm, M. A. Huynen, S. Rauscher, P. E. Stolorz, and P. F. Stadler, "Automatic detection of conserved RNA structure elements in complete RNA virus genomes," Nucleic Acids Res, vol. 26, pp. 3825-36, 1998.
[16] J. Gorodkin, L. J. Heyer, and G. D. Stormo, "Finding common sequence and structure motifs in a set of RNA sequences," Proc Int Conf Intell Syst Mol Biol, vol. 5, pp. 120-3, 1997.
[17] D. Sankoff, "Simultaneous solution of the RNA folding, alignment and protosequence problems," SIAM J., vol. 45, pp. 810-825, 1985.
[18] Y. J. Hu, "GPRM: A genetic programming approach to finding common RNA secondary structure elements," Nucleic Acids Res, vol. 31, pp. 3446-9, 2003.
[19] M. Zuker, "Mfold web server for nucleic acid folding and hybridization prediction," Nucleic Acids Res, vol. 31, pp. 3406-15, 2003.
[20] M. Zuker, "On finding all suboptimal foldings of an RNA molecule," Science, vol. 244, pp. 48-52, 1989.
[21] Y. Ding and C. E. Lawrence, "A statistical sampling algorithm for RNA secondary structure prediction," Nucleic Acids Res, vol. 31, pp. 7280-301, 2003.
[22] I. L. Hofacker, "Vienna RNA secondary structure server," Nucleic Acids Res, vol. 31, pp. 3429-31, 2003.
[23] J. Gorodkin, L. J. Heyer, and G. D. Stormo, "Finding the most significant common sequence and structure motifs in a set of RNA sequences," Nucleic Acids Res, vol. 25, pp. 3724-32, 1997.
[24] J. H. Havgaard, R. B. Lyngso, G. D. Stormo, and J. Gorodkin, "Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%," Bioinformatics, vol. 21, pp. 1815-24, 2005.
[25] R. J. Klein and S. R. Eddy, "RSEARCH: finding homologs of single structured RNA sequences," BMC Bioinformatics, vol. 4, pp. 44, 2003.
[26] T. A. Brown, Genomes, 2002.
[27] R. B.-Y. a. B. Ribeiro-Neto, Modern Information Retrieval, 2001.
[28] E. W. Manber U. and Myers, "Suffix arrays: a new method for on-line string searches," SIAM J. Comput., vol. 22, pp. 935–948, 1993.
[29] J. Bentley, Programming Pearls, 2nd Edition ed: Addison-Wesley Professional; 2 edition (September 27, 1999), 1999.
[30] N. Pillai-Nair, K. H. Kim, and C. Hemenway, "Cis-acting regulatory elements in the potato virus X 3' non-translated region differentially affect minus-strand and plus-strand RNA accumulation," J Mol Biol, vol. 326, pp. 701-20, 2003.
[31] Y. M. Hou, "The tertiary structure of tRNA and the development of the genetic code," Trends Biochem Sci, vol. 18, pp. 362-4, 1993.
[32] T. M. Lowe and S. R. Eddy, "tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence," Nucleic Acids Res, vol. 25, pp. 955-64, 1997.
指導教授 洪炯宗、黃憲達
(Jorng-Tzong Horng、Hsien-Da Huang)
審核日期 2005-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明