博碩士論文 107825001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.139.240.142
姓名 李慧妤(Hui-yu Lee)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱
(Beta oscillation with transcranial alternating current stimulation (tACS) over pre-SMA decreased Inhibitory Control ability)
相關論文
★ 時間及空間對注意力暫失的影響 以及其可能的神經生理機制★ 注意力分配及眼球運動準備歷程對於眼動潛伏時間與眼動軌跡的影響
★ 注意力暫失中的數字表徵: 數字距離對注意力暫失的影響★ 利用跨顱磁刺激探討主動式注意力攫取的神經機制
★ 以數學模型及跨顱磁刺激探討注意力分配及眼球運動準備歷程★ 學齡前兒童之視覺注意力發展及電腦化注意力訓練效果之探討
★ 以跨顱磁刺激探討左側下部頂葉以及左側上部頂葉的功能在中文處理中所扮演的角色★ 性侵害犯的衝動行為表現-情緒狀態如何影響性侵害犯的抑制能力?
★ 學齡前階段孩童眼動抑制能力的發展和特性★ 學齡前階段孩童衝突解決和動作反應抑制能力的發展
★ 6歲孩童與成人在數字和具體數量上的自動化處理★ 期望效果之影響與可能的神經機制
★ Attentional reorienting: the dynamic interaction between goal-directed and stimulus-driven attentioinal control★ 前額葉眼動區在視覺搜尋作業上對不同干擾物特徵與顯示時間扮演的角色
★ Roles of the Pre-supplementary Motor Area and Right Inferior Frontal Gyrus in Stimulus Selective Stop-signal task: A Theta Burst Transcranial!Magnetic! Stimulation!Study★ Investigation of posterior parietal cortex visuospatial control over processing in near and far space using transcranial magnetic stimulation
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-20以後開放)
摘要(中) 前額葉上內側 (pre-supplementary motor area, Pre-SMA)是抑制控制中相當重要的腦區。先前的研究表明,pre-SMA的介入可能會影響反應選擇及增強抑制性能之間的聯繫。非侵入性腦刺激是研究大腦區域與行為表現之間因果關係的重要技術。Joundi等人(2012) 和Leunissen等人(2022 年)使用 Go/Nogo作業和傳統的停止信號作業分別對於pre-SMA進行beta (20 Hz) 跨顱交流電刺激並觀察運動行為結果的變化。他們認為抑制能力隨著beta功率的增加而增加。此研究旨在更全面地討論beta跨顱交流電刺激應用於pre-SMA後的變化,包括對行為表現、N1及N2分別於電刺激之前與之後的差異以及希爾伯特-黃轉換的功率帶差異之變化。
30名學生在正式實驗期間進行了三次選擇性停止信號作業,在第二次的選擇性停止信號作業期間進行了1mA電流的beta跨顱交流電刺激。參與者需要在不犧牲準確性的情況下,對於指示盡快地透過力鉗 (grip-force) 做出反應或是抑制他們的行為。行為結果表明,刺激介入後,力量的恢復能力變差。在停止條件下,不成功停止的反應力量及力量速率,和不成功停止試驗中反應力量較大的錯誤回應率會隨著停止信號出現的時間長度增加而增加,這表示停止信號延遲的時間越長反應的力量會更大。希爾伯特-黃轉換 (Hilbert-Huang Transform; HHT, Huang et al. (1998)) 的結果表明,比較不同條件的結果之下,theta (2.8Hz~6.4Hz) 在進行反應的準備期間存在較低功率差,在運動反應期間存在較高功率差。繼續進行指令在延遲信號較短的條件中,跨顱交流電刺激之前與之後,運動區域的beta功率差和alpha (6.4Hz~13.5Hz) 功率差在進行運動反應的期間增加。在停止刺激條件出現之前,跨顱交流電刺激之後的成功停止反應與不成功停止反應之間beta功率差降低。同時,alpha和theta功率的變化也與較差的運動表現有關。事件相關模式於N1的結果也表明跨顱交流電刺激的介入會導致抑制能力下降。
在我們的研究中,我們不僅提供跨顱交流電刺激之後的行為表現變化,還提供了選擇性停止信號任務期間的電生理功率差異變化。透過不同停止條件的比較,beta、alpha和theta的功率差在反應準備過程時減小,而在運動反應過程時增加,beta、alpha和theta的功率差與抑制能力有高度的相關性。
摘要(英) Background: The pre-supplementary motor area (pre-SMA) plays an important role in inhibition control, where previous studies suggest that intervention of pre-SMA likely affects the connection amid response selection and enhanced inhibitory performance. Non-invasive brain stimulation is an important technology to investigate the causal link between brain areas and behavioral performance. Joundi et al. (2012) and Leunissen et al. (2022) used the go/no-go task and the conventional stop signal task to investigate the motor change with tACS stimulation over pre-SMA with beta oscillation separately. They suggested that inhibitory ability increases with beta power increases. The current study aims to provide a more comprehensive discussion of the tACS intervention with beta oscillation over pre-SMA, including the difference between stimulation for behavior performance, N1 and N2 components and the power band change with Hilbert Huang Transform (HHT).
Method: Thirty students (12 females / 18 males) were recruited from National Central University, Taiwan. Three sessions of the selective stop signal tasks were conducted during the formal experiment, and intervention of beta tACS with 1mA current was conducted during the second session of selected stop signal tasks. Participants were required to inhibit their preparation response or respond with the force pincher with their thumb and index fingers as fast as possible without sacrificing accuracy, following instructions.
Results: The behavioral result shows that the ability of the force to recover after peak force alignment became poorer with stimulation intervention. In the stop condition, the peak force and peak force rate of unsuccessful stop and trial numbers of the full USST were increased followed by increased SSDs (stop signal delays), which means that the larger force is followed by a longer stop signal delay. The HHT result shows that theta power decreases with time during response preparation, and increases with time during motor response, beta and alpha power increases during motor response around the motor area in CSD1 (continue go signal delay-shortest one) between different tACS stimulation sessions. The beta power difference decreased between the successful stop and unsuccessful stop conditions before stop stimulus onset, yielding poorer performance after tACS intervention. Increased alpha and theta power during poor motor performance with poorer inhibition is also consistent with previous research findings. The Event Related Mode (ERM) result shows that for the N1 component, the ability of the inhibition decreases after tACS intervention.
Conclusion: In our study, we not only provide the change of behavioral performance after stimulation but also that of the electrophysiological power difference during the selective stop signal task. The beta, alpha and theta power difference decreases during response preparation with increases during motor response. These patterns of results suggest that the difference change for beta, alpha, and theta power band were highly correlated with inhibition ability change. Our findings show that tACS intervention reduces the ability of inhibitory control, although different from previous findings (i.e., tACS enhances the ability of inhibitory control, (e.g: Joundi et al. (2012) ; (Joundi et al., 2012); Leunissen et al. (2022)), our study may provide a more complete and comprehensive preparatory and executive period before inhibitory control information.
關鍵字(中) ★ 抑制控制
★ 跨顱交流電刺激
★ 前額葉上內側
★ 選擇性停止信號作業
關鍵字(英) ★ inhibitory control
★ transcranial alternating current stimulation
★ pre-supplementary motor area
★ selective stop signal task
論文目次 中文摘要 i
Abstract iii
誌謝 v
Table of Content vii
Table of figures x
Chapter 1. Introduction 1
1.1 Inhibitory control 1
1.2 Inhibitory control paradigm experiment 1
1.3 Independent Horse Race Model 4
1.4 Neural oscillations 6
1.4.1 Physiological mechanism of inhibitory control (pre-SMA and rIFG) 6
1.4.2 Neural oscillations and Event-related potentials (ERP) 8
1.4.3 Event-related mode (ERM) and Hilbert-Huang Transform (HHT) 9
1.5 Non-Invasive Brain Stimulation (NIBS) on inhibitory control 10
1.6 Aim and purpose 12
Chapter 2. Materials and Method 13
2.1 Participants 13
2.2 Apparatus 13
2.3 Procedure 13
2.3.1 Baseline reaction time stage 15
2.3.2 Tracking critical SSD stage 15
2.3.3 Formal experiment 16
2.4 EEG recording and tACS stimulation 18
2.5 Behavioral analysis 21
2.6 EEG Analysis 24
2.6.1 Preprocessing 24
2.6.2 HHT analysis 24
2.6.3 ERM analysis 27
Chapter 3. Result 28
3.1 Behavioral Results 28
3.1.1 Inhibition function, Non-cancelled rate, Accuracy and SSRT 28
3.1.2 Comparison of Reaction time, force and force rate across Go, unsuccessful stop and continue go conditions 29
3.1.3 Comparison of stop signal reaction time (SSRT), force and force rate across three SSDs in unsuccessfully stop 34
3.1.4 Comparison of force and force rate distribution across partial USST and full USST 37
3.1.5 Comparison of trial number, force and force rate across three SSDs in partial USST and full USST 38
3.1.6 Comparison of RT, force and force rate across three SSDs in the continue go condition 44
3.2 HHT Results 48
3.2.1 Comparison of frequency power across pre-stimulation and post-stimulation in different conditions and different signal delays 48
3.2.2 Comparison of frequency power across different conditions and different signal delays in pre-stimulation and post-stimulation 51
3.3 ERM Results 61
3.3.1 Comparison of N1 and N2 amplitude across pre-stimulation and post-stimulation in different conditions 61
3.3.2 Comparison of N1 and N2 topographic result across pre-stimulation and post-stimulation in different conditions 64
3.3.3 Comparison of N1 and N2 topographic difference across different conditions in pre-stimulation and post-stimulation 65
Chapter 4. Discussion and Conclusion 69
4.1 Stimulation effect in behavior performance to inhibitory control 69
4.2 Frequency power relative to inhibitory control with tACS intervention 70
4.3 ERM relative to inhibition with tACS intervention 72
4.4 Conclusion 73
Reference 75
參考文獻 Alegre, M., Lopez-Azcarate, J., Obeso, I., Wilkinson, L., Rodriguez-Oroz, M. C., Valencia, M., Garcia-Garcia, D., Guridi, J., Artieda, J., & Jahanshahi, M. (2013). The subthalamic nucleus is involved in successful inhibition in the stop-signal task: a local field potential study in Parkinson′s disease. Experimental neurology, 239, 1-12.
Aron, A. R., Dowson, J. H., Sahakian, B. J., & Robbins, T. W. (2003). Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biological psychiatry, 54(12), 1465-1468.
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in cognitive sciences, 8(4), 170-177.
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends in cognitive sciences, 18(4), 177-185.
Bannon, S., Gonsalvez, C. J., Croft, R. J., & Boyce, P. M. (2002). Response inhibition deficits in obsessive–compulsive disorder. Psychiatry research, 110(2), 165-174.
Bekker, E. M., Kenemans, J. L., Hoeksma, M. R., Talsma, D., & Verbaten, M. N. (2005). The pure electrophysiology of stopping. International Journal of Psychophysiology, 55(2), 191-198.
Bissett, P. G., & Logan, G. D. (2014). Selective stopping? Maybe not. Journal of Experimental Psychology: General, 143(1), 455.
Burle, B., Spieser, L., Roger, C., Casini, L., Hasbroucq, T., & Vidal, F. (2015). Spatial and temporal resolutions of EEG: Is it really black and white? A scalp current density view. International Journal of Psychophysiology, 97(3), 210-220.
Cai, Y., Li, S., Liu, J., Li, D., Feng, Z., Wang, Q., Chen, C., & Xue, G. (2016). The role of the frontal and parietal cortex in proactive and reactive inhibitory control: a transcranial direct current stimulation study. Journal of cognitive neuroscience, 28(1), 177-186.
Cavanagh, J. F., Cohen, M. X., & Allen, J. J. (2009). Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. Journal of Neuroscience, 29(1), 98-105.
Chang, C.-F., Liang, W.-K., Lai, C.-L., Hung, D. L., & Juan, C.-H. (2016). Theta oscillation reveals the temporal involvement of different attentional networks in contingent reorienting. Frontiers in human neuroscience, 10, 264.
Chen, C.-Y., Muggleton, N. G., Juan, C.-H., Tzeng, O. J., & Hung, D. L. (2008). Time pressure leads to inhibitory control deficits in impulsive violent offenders. Behavioural Brain Research, 187(2), 483-488.
Chen, C.-Y., Muggleton, N. G., Tzeng, O. J., Hung, D. L., & Juan, C.-H. (2009). Control of prepotent responses by the superior medial frontal cortex. NeuroImage, 44(2), 537-545.
Chuang, K.-Y., Chen, Y.-H., Balachandran, P., Liang, W.-K., & Juan, C.-H. (2019). Revealing the electrophysiological correlates of working memory-load effects in symmetry span task with HHT method. Frontiers in Psychology, 10, 855.
Cunillera, T., Fuentemilla, L., Brignani, D., Cucurell, D., & Miniussi, C. (2014). A simultaneous modulation of reactive and proactive inhibition processes by anodal tDCS on the right inferior frontal cortex. PloS one, 9(11), e113537.
de Boer, N. S., Schluter, R. S., Daams, J. G., van der Werf, Y. D., Goudriaan, A. E., & van Holst, R. J. (2021). The effect of non-invasive brain stimulation on executive functioning in healthy controls: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 125, 122-147.
De Jong, R., Coles, M. G., Logan, G. D., & Gratton, G. (1990). In search of the point of no return: the control of response processes. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 164.
Dimoska, A., Johnstone, S. J., & Barry, R. J. (2006). The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection? Brain and cognition, 62(2), 98-112.
Eimer, M. (1993). Effects of attention and stimulus probability on ERPs in a Go/Nogo task. Biological psychology, 35(2), 123-138.
Enriquez-Geppert, S., Konrad, C., Pantev, C., & Huster, R. J. (2010). Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop-signal task. NeuroImage, 51(2), 877-887.
Floden, D., & Stuss, D. T. (2006). Inhibitory control is slowed in patients with right superior medial frontal damage. Journal of cognitive neuroscience, 18(11), 1843-1849.
Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J., & Owen, A. M. (2010). The role of the right inferior frontal gyrus: inhibition and attentional control. NeuroImage, 50(3), 1313-1319.
Hoshi, E., & Tanji, J. (2004). Differential roles of neuronal activity in the supplementary and presupplementary motor areas: from information retrieval to motor planning and execution. Journal of neurophysiology, 92(6), 3482-3499.
Hsu, T.-Y., Tseng, L.-Y., Yu, J.-X., Kuo, W.-J., Hung, D. L., Tzeng, O. J., Walsh, V., Muggleton, N. G., & Juan, C.-H. (2011). Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. NeuroImage, 56(4), 2249-2257.
Huang, N. E., Hu, K., Yang, A. C., Chang, H.-C., Jia, D., Liang, W.-K., Yeh, J. R., Kao, C.-L., Juan, C.-H., & Peng, C. K. (2016). On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150206.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995.
Jacobson, L., Javitt, D. C., & Lavidor, M. (2011). Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. Journal of cognitive neuroscience, 23(11), 3380-3387.
Janssen, T. W., Heslenfeld, D. J., van Mourik, R., Geladé, K., Maras, A., & Oosterlaan, J. (2018). Alterations in the ventral attention network during the stop-signal task in children with ADHD: an event-related potential source imaging study. Journal of attention disorders, 22(7), 639-650.
Johnstone, S. J., Barry, R. J., & Clarke, A. R. (2007). Behavioural and ERP indices of response inhibition during a Stop-signal task in children with two subtypes of Attention-Deficit Hyperactivity Disorder. International Journal of Psychophysiology, 66(1), 37-47.
Joundi, R. A., Jenkinson, N., Brittain, J.-S., Aziz, T. Z., & Brown, P. (2012). Driving oscillatory activity in the human cortex enhances motor performance. Current Biology, 22(5), 403-407.
Juan, C.-H., & Muggleton, N. G. (2012). Brain stimulation and inhibitory control. Brain Stimulation, 5(2), 63-69.
Khanna, P., & Carmena, J. M. (2015). Neural oscillations: beta band activity across motor networks. Current opinion in neurobiology, 32, 60-67.
Khng, K. H., & Lee, K. (2014). The relationship between Stroop and stop-signal measures of inhibition in adolescents: Influences from variations in context and measure estimation. PloS one, 9(7), e101356.
Kim, J.-H., Lee, J.-M., Jo, H. J., Kim, S. H., Lee, J. H., Kim, S. T., Seo, S. W., Cox, R. W., Na, D. L., & Kim, S. I. (2010). Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. NeuroImage, 49(3), 2375-2386.
Ko, Y.-T., Alsford, T., & Miller, J. (2012). Inhibitory effects on response force in the stop-signal paradigm. Journal of Experimental Psychology: Human Perception and Performance, 38(2), 465.
Kwon, Y. H., & Kwon, J. W. (2013). Response inhibition induced in the stop-signal task by transcranial direct current stimulation of the pre-supplementary motor area and primary sensoriomotor cortex. Journal of physical therapy science, 25(9), 1083-1086.
Lansbergen, M. M., Böcker, K. B., Bekker, E. M., & Kenemans, J. L. (2007). Neural correlates of stopping and self-reported impulsivity. Clinical Neurophysiology, 118(9), 2089-2103.
Lee, H. W., Lo, Y.-H., Li, K.-H., Sung, W.-S., & Juan, C.-H. (2015). The relationship between the development of response inhibition and intelligence in preschool children. Frontiers in Psychology, 6, 802.
Lee, H. W., Lu, M.-S., Chen, C.-Y., Muggleton, N. G., Hsu, T.-Y., & Juan, C.-H. (2016). Roles of the pre-SMA and rIFG in conditional stopping revealed by transcranial magnetic stimulation. Behavioural Brain Research, 296, 459-467.
Leunissen, I., Van Steenkiste, M., Heise, K.-F., Monteiro, T. S., Dunovan, K., Mantini, D., Coxon, J. P., & Swinnen, S. P. (2022). Effects of beta-and gamma-band rhythmic stimulation on motor inhibition. iScience, 104338.
Li, C.-s. R., Huang, C., Constable, R. T., & Sinha, R. (2006). Imaging response inhibition in a stop-signal task: neural correlates independent of signal monitoring and post-response processing. Journal of Neuroscience, 26(1), 186-192.
Liang, W.-K., Lo, M.-T., Yang, A. C., Peng, C.-K., Cheng, S.-K., Tseng, P., & Juan, C.-H. (2014). Revealing the brain′s adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy. NeuroImage, 90, 218-234.
Lo, Y.-H., Liang, W.-K., Lee, H.-W., Wang, C.-H., Tzeng, O. J., Hung, D. L., Cheng, S.-K., & Juan, C.-H. (2013). The neural development of response inhibition in 5-and 6-year-old preschoolers: an ERP and EEG study. Developmental Neuropsychology, 38(5), 301-316.
Logan, G. D., Cowan, W. B., & Davis, K. A. (1984). On the ability to inhibit simple and choice reaction time responses: a model and a method. Journal of Experimental Psychology: Human Perception and Performance, 10(2), 276.
Logan, G. D., Van Zandt, T., Verbruggen, F., & Wagenmakers, E.-J. (2014). On the ability to inhibit thought and action: general and special theories of an act of control. Psychological review, 121(1), 66.
Luck, S. J. (2005). Ten simple rules for designing and interpreting ERP experiments. Event-related potentials: A methods handbook, 4.
MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. Psychological bulletin, 109(2), 163.
Matzke, D., Verbruggen, F., & Logan, G. (2018). The stop-signal paradigm. Stevens’ handbook of experimental psychology and cognitive neuroscience, 5, 383-427.
Mostofsky, S. H., & Simmonds, D. J. (2008). Response inhibition and response selection: two sides of the same coin. Journal of cognitive neuroscience, 20(5), 751-761.
Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9(11), 856-869.
Nachev, P., Wydell, H., O’neill, K., Husain, M., & Kennard, C. (2007). The role of the pre-supplementary motor area in the control of action. NeuroImage, 36, T155-T163.
Nguyen, T. V., Balachandran, P., Muggleton, N. G., Liang, W.-K., & Juan, C.-H. (2021). Dynamical EEG Indices of Progressive Motor Inhibition and Error-Monitoring. Brain sciences, 11(4), 478.
Nguyen, T. V., Hsu, C.-Y., Jaiswal, S., Muggleton, N. G., Liang, W.-K., & Juan, C.-H. (2021). To Go or Not to Go: Degrees of Dynamic Inhibitory Control Revealed by the Function of Grip Force and Early Electrophysiological Indices. Frontiers in human neuroscience, 15, 6.
Parkin, B. L., Ekhtiari, H., & Walsh, V. F. (2015). Non-invasive human brain stimulation in cognitive neuroscience: a primer. Neuron, 87(5), 932-945.
Portugal, A. C. A., Afonso Jr, A. S., Caldas, A. L., Maturana, W., Mocaiber, I., & Machado-Pinheiro, W. (2018). Inhibitory mechanisms involved in Stroop-matching and stop-signal tasks and the role of impulsivity. Acta Psychologica, 191, 234-243.
Ramautar, J., Kok, A., & Ridderinkhof, K. (2004). Effects of stop-signal probability in the stop-signal paradigm: the N2/P3 complex further validated. Brain and cognition, 56(2), 234-252.
Ramautar, J., Kok, A., & Ridderinkhof, K. (2006). Effects of stop-signal modality on the N2/P3 complex elicited in the stop-signal paradigm. Biological psychology, 72(1), 96-109.
Raud, L., Westerhausen, R., Dooley, N., & Huster, R. J. (2020). Differences in unity: The go/no-go and stop signal tasks rely on different mechanisms. NeuroImage, 210, 116582.
Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage, 20(1), 351-358.
Schachar, R., Logan, G. D., Robaey, P., Chen, S., Ickowicz, A., & Barr, C. (2007). Restraint and cancellation: multiple inhibition deficits in attention deficit hyperactivity disorder. Journal of abnormal child psychology, 35(2), 229-238.
Schlurmann, T. (2001). The Empirical Mode Decomposition and the Hilbert Spectra to Analyse Embedded. Rogue Waves 2000: Proceedings of a Workshop, Organized by Ifremer and Held in Brest, France, 29-30 November 2000, Within the Brest SeaTechWeek 2000,
Sharp, D., Bonnelle, V., De Boissezon, X., Beckmann, C., James, S., Patel, M., & Mehta, M. A. (2010). Distinct frontal systems for response inhibition, attentional capture, and error processing. Proceedings of the National Academy of Sciences, 107(13), 6106-6111.
Simmonds, D. J., Fotedar, S. G., Suskauer, S. J., Pekar, J. J., Denckla, M. B., & Mostofsky, S. H. (2007). Functional brain correlates of response time variability in children. Neuropsychologia, 45(9), 2147-2157.
Simmonds, D. J., Pekar, J. J., & Mostofsky, S. H. (2008). Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 46(1), 224-232.
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of experimental psychology, 18(6), 643.
Swann, N., Tandon, N., Canolty, R., Ellmore, T. M., McEvoy, L. K., Dreyer, S., DiSano, M., & Aron, A. R. (2009). Intracranial EEG reveals a time-and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses. Journal of Neuroscience, 29(40), 12675-12685.
Tamm, L., Menon, V., Ringel, J., & Reiss, A. L. (2004). Event-related FMRI evidence of frontotemporal involvement in aberrant response inhibition and task switching in attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 43(11), 1430-1440.
Tsai, S.-Y., Jaiswal, S., Chang, C.-F., Liang, W.-K., Muggleton, N. G., & Juan, C.-H. (2018). Meditation effects on the control of involuntary contingent reorienting revealed with electroencephalographic and behavioral evidence. Frontiers in integrative neuroscience, 12, 17.
Tzagarakis, C., Ince, N. F., Leuthold, A. C., & Pellizzer, G. (2010). Beta-band activity during motor planning reflects response uncertainty. Journal of Neuroscience, 30(34), 11270-11277.
van Driel, J., Ridderinkhof, K. R., & Cohen, M. X. (2012). Not all errors are alike: theta and alpha EEG dynamics relate to differences in error-processing dynamics. Journal of Neuroscience, 32(47), 16795-16806.
Verbruggen, F., Aron, A. R., Stevens, M. A., & Chambers, C. D. (2010). Theta burst stimulation dissociates attention and action updating in human inferior frontal cortex. Proceedings of the National Academy of Sciences, 107(31), 13966-13971.
Verbruggen, F., & Logan, G. D. (2008a). Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms. Journal of Experimental Psychology: General, 137(4), 649.
Verbruggen, F., & Logan, G. D. (2008b). Response inhibition in the stop-signal paradigm. Trends in cognitive sciences, 12(11), 418-424.
Verbruggen, F., & Logan, G. D. (2009). Models of response inhibition in the stop-signal and stop-change paradigms. Neuroscience & Biobehavioral Reviews, 33(5), 647-661.
Verbruggen, F., & Logan, G. D. (2015). Evidence for capacity sharing when stopping. Cognition, 142, 81-95.
Wilens, T. E., Biederman, J., Faraone, S. V., Martelon, M., Westerberg, D., & Spencer, T. J. (2009). Presenting ADHD symptoms, subtypes, and comorbid disorders in clinically referred adults with ADHD. The Journal of clinical psychiatry, 70(11), 15333.
Wilhelm, R. A., Threadgill, A. H., & Gable, P. A. (2021). Motor Preparation and Execution for Performance Difficulty: Centroparietal Beta Activation during the Effort Expenditure for Rewards Task as a Function of Motivation. Brain sciences, 11(11), 1442.
Williams, N., Nasuto, S. J., & Saddy, J. D. (2011). Evaluation of empirical mode decomposition for event-related potential analysis. EURASIP Journal on Advances in Signal Processing, 2011, 1-11.
Wu, Z., Huang, N. E., & Chen, X. (2009). The multi-dimensional ensemble empirical mode decomposition method. Advances in Adaptive Data Analysis, 1(03), 339-372.
Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: conflict monitoring and the error-related negativity. Psychological review, 111(4), 931.
Yu, J., Tseng, P., Hung, D. L., Wu, S. W., & Juan, C. H. (2015). Brain stimulation improves cognitive control by modulating medial‐frontal activity and preSMA‐vmPFC functional connectivity. Human brain mapping, 36(10), 4004-4015.
Zaepffel, M., Trachel, R., Kilavik, B. E., & Brochier, T. (2013). Modulations of EEG beta power during planning and execution of grasping movements. PloS one, 8(3), e60060.
指導教授 阮啟弘(Chi-Hung Juan) 審核日期 2022-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明