博碩士論文 109521152 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:18.191.154.174
姓名 趙紹安(Shao-An Chao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 新型三維光學影像量測系統之設計與控制
(Design and Control of a Novel 3D Optical Image Measurement System)
相關論文
★ 基於適應性徑向基神經網路與非奇異快速終端滑模控制結合線上延遲估測器應用於二軸機械臂運動軌跡精確控制★ 新型雙紐線軌跡設計與進階控制實現壓電平台快速與精確定位
★ 基於深度座標卷積與自動編碼器給予行人實時路徑及終點位置精確預測★ 修正式雙紐線軌跡結合自適應積分終端滑動模態控制與逆模型遲滯補償實現壓電平台精確追蹤
★ 以粒子群最佳化-倒傳遞類神經網路-比例積分微分控制器和影像金字塔轉換融合方法實現三維光學顯微影像系統★ 以局部熵亂度分布與模板匹配方法結合自適應ORB特徵提取達成多影像精確拼接
★ 低扭矩機械手臂機構開發與脈寬調變進階控制器設計★ 使用時域門控與梅森增益公式構建四埠夾具的散射參數表徵
★ 通過強化學習與積分滑模動量觀測器實現機器手臂的強健近佳PD控制策略★ 基於類代理注意力特徵融合模型的聯合 實體關係抽取方法
★ 新型修正式柵欄軌跡結合擴增狀態估測 滑模回授與多自由度Bouc-Wen遲滯前饋補償 控制器給予壓電平台快速精確追蹤★ 結合點雲密度熵計算方法和運動回復結構在虛幻引擎中進行影像三維點雲模型及渲染重建
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 光學顯微鏡(Optical Microscope, OM)是一種利用光學透鏡來放大影像的觀察儀器,其影像解析度的觀測極限為光波長的二分之一。它的主要功能是將人眼不能辨認之物體放大檢視,並進一步來觀察物體之結構,為一般微米或次微米尺度研究不可或缺之二維(2D)影像觀測儀器。而壓電平台(Piezo-stage)是一種高精密定位的裝置,它可以透過壓電效應使壓電平台來產生微小的位移,定位的精密度可以到達奈米等級。
本論文將OM以及一個z軸壓電平台結合,藉由系統互補的方式,來建構一個新的三維(3D)光學影像量測系統。其中,所開發系統之技術包括壓電平台進階控制器的設計,OM影像資料的演算法建構。首先,z軸壓電平台採用倒傳遞類神經網路(BPNN)控制法則,藉由連續步階的行走方式,由低至高來移動待測樣本,在z軸壓電平台的步階動作達到一個微小之穩態誤差時,以OM來擷取每一步階位置的樣本影像。其次,以連通分量標記法針對每張2D的OM影像做去雜訊,再藉由影像處理技術將每張去雜訊後的2D OM影像轉換成3D的數據。最後,將每一層的3D數據堆疊並建構出一張精確的3D影像。
摘要(英) Optical microscope (OM) is an observation instrument that uses optical lenses to magnify images, and its resolution is limited to one-half of the wavelength of light. Its primary function is to inspect the structure of objects that human eyes cannot recognize. It is an indispensable two-dimensional (2D) image observation instrument for general micro or sub-micro scale research. Piezo-stage is a high-precision positioning device, which can generate tiny displacements of the piezoelectric stage through the piezoelectric effect, and the positioning precision can reach the nanometer level.
This thesis will combine an OM and a z-axis piezoelectric stage to construct a new three-dimensional (3D) optical image measurement system. The technology of the developed system includes the design of the advanced controller in the piezoelectric stage and the construction of the algorithm in the OM image data. First, the z-axis piezoelectric stage uses a back propagation neural network (BPNN) control strategy. The z-axis piezoelectric stage uses continuous steps to move the scanned sample from a low-to-high manner. When each step motion reaches a small steady-state error, the OM is used to capture the scanned sample image of each step position. Second, each 2D OM image with connected-component labeling for de-noise, and then the 2D OM images are converted into 3D data by image processing. Finally, stack the 3D data of each layer to construct an accurate 3D image.
關鍵字(中) ★ 光學顯微鏡
★ 壓電掃描平台
★ 倒傳遞神經網路
★ 連通分量標記法
★ 去雜訊
關鍵字(英) ★ Optical microscopy
★ piezoelectric stage
★ back propagation neural network
★ connected-component labeling
★ de-noise
論文目次 摘 要 i
ABSTRACT ii
誌謝 iv
Table of content v
List of Figures vii
List of Tables ix
Explanation of Symbols x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 2
1.2.1 Piezoelectric Stage 2
1.2.2 Optical Microscope 7
1.3 Contribution 10
1.4 Thesis Organization 10
Chapter 2 Preliminaries 12
2.1 Fundamentals of Piezoelectric Scanner 12
2.1.1 Piezoelectric Effect 12
2.1.2 Hysteresis Phenomenon 14
2.1.3 Creep Phenomenon 15
2.2 Operation Principle of Optical Microscopy System 16
2.3 Back Propagation Neural Network 22
Chapter 3 System Design 25
3.1 PSCOM Scanning System 26
3.2 PSCOM Measuring System 28
3.3 Hardware Equipment 30
Chapter 4 Novel Images Processing Algorithm 33
4.1 The Connected-Component Labeling Algorithm 34
4.2 Image Data Overlay 40
Chapter 5 Controller Design 41
5.1 Scan Trajectory of Z-axis Piezoscanner 41
5.2 Back Propagation Neural Network Control for Z-axis Piezoscanner 42
5.2.1 Control Algorithm 43
5.2.2 Weight Update 44
5.2.3 Stability Analysis 46
5.3 Simulation and Experimental Results 48
Chapter 6 Experimental Results 53
6.1 Experimental Setup 53
6.2 Scanning Result 57
Chapter 7 Conclusions 57
Reference 68
參考文獻 [1] G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett., vol. 56, no. 9, pp. 930–933, Mar. 1986.
[2] S. K. Nayar and Y. Nakagawa, “Shape from Focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16. no. 8, pp. 824-831, 1994.
[3] G. Binnig and H. Rohrer, “Scanning tunneling microscopy,” Helvetica Phys. Acta, vol. 55, pp. 726–735, 1982.
[4] J. Liu, J. Wang, and Q. Zou, “Decomposition-learning-based output tracking to simultaneous hysteresis and dynamics control: high-speed large-range nanopositioning example,” IEEE Transactions on Control Systems Technology, vol. 29, no. 4, pp. 1775-1782, 2021.
[5] Y. K. A. Nadawi, X. Tan, and H. K. Khalil, “Inversion-free hysteresis compensation via adaptive conditional servomechanism with application to nanopositioning control,” IEEE Transactions on Control Systems Technology, vol. 29, no. 5, pp. 1922-1935, 2021.
[6] Y. Tao, L. Li, H. X. Li, and L. Zhu, “High-bandwidth tracking control of piezoactuated nanopositioning stages via active modal control,” IEEE Transactions on Automation Science and Engineering, pp. 1-9, 2021.
[7] C. Yang, Y. Wang, and K. Y. Toumi, “Hierarchical antidisturbance control of a piezoelectric stage via combined disturbance observer and error-based adrc,” IEEE Transactions on Industrial Electronics, vol. 69, no. 5, pp. 5060-5070, 2022.
[8] X. Huang, W. Zhou, X. Li, L. Zhu, and H. T. Zhang, “Online koopman operator learning to identify cross-coupling effect of piezoelectric tube scanners in atomic force microscopes,” IEEE Transactions on Industrial Informatics, vol. 18, no. 2, pp. 1111-1120, 2022.
[9] Z. Feng, J. Ling, M. Ming, W. Liang, K. K. Tan, and X. Xiao, “Signal-transformation-based repetitive control of spiral trajectory for piezoelectric nanopositioning stages,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 3, pp. 1634-1645, 2020.
[10] R. Erni, M. D. Rossell, C. Kisielowski, and U. Dahmen, “Atomic-resolution imaging with a sub-50-pm electron probe,” Physical Review Letters, pp. 096101-1- 096101-4, Mar. 2009.
[11] E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv Für Mikroskopische Anatomie, vol. 9, pp.413-468, 1873.
[12] E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer “Near field scanning optical microscopy (nsom): development and biophysical applications,” Biophysical Journal, vol. 49, no. 1, pp. 269-279, 1986.
[13] S. Hell and E. H. K. Stelzer, “Properties of a 4pi confocal fluorescence microscope,” Journal of the Optical Society of America A, vol. 9, no. 12, pp. 2159-2166, 1992.
[14] J. M. Guerra, “Photon tunneling microscopy,” Applied Optics, vol. 29, no. 26, pp. 3741-3752, 1990.
[15] M. Saxena, G. Eluru, and S. S. Gorthi, “Structured illumination microscopy,” Advances in Optics and Photonics, vol. 7, no. 2, pp. 241-275, 2015.
[16] A. DiSpirito III, D. Li, T. Vu, M. Chen, D. Zhang, J. Luo, R. Horstmeyer, and J. Yao, “Reconstructing undersampled photoacoustic microscopy images using deep learning,” IEEE Transactions on Medical Imaging, vol. 40, no. 2, pp. 562-570, 2021.
[17] A. Shajkofci and M. Liebling, “Spatially-variant cnn-based point spread function estimation for blind deconvolution and depth estimation in optical microscopy,” IEEE Transactions on Image Processing, vol. 29, pp. 5848-5861, 2020.
[18] J. Curie and P. Curie, “Development, via compression, of electric polarization in hemihedral crystals with inclined faces,” Bulletin de la Société Minérologique de France, pp. 90-93, 1880.
[19] P. J. Chen and S. T. Montgomery, “A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity,” Ferroelectric, vol. 23, pp. 199-207, 1980.
[20] F. Preisach, “Über die magnetische nachwirkung,” Zeitschrift für Physik, vol. 94, pp. 277-302, 1935.
[21] Y. K. Wen, “Method for random vibration of hysteretic systems,” Journal of the Engineering Mechanics Division, vol. 102, no. 2, pp. 249-263, 1976.
[22] M. Goldfarb and N. Celanovic, “Modeling piezoelectric stack actuators for control of micromanipulation,” IEEE Control Systems Magazine, vol. 17, no. 3, pp. 69-79, 1997.
[23] H. Jung and D. G. Gweon, "Creep characteristics of piezoelectric actuators," Review of Scientific Instruments, vol. 71, no. 4, pp. 1895-1900, 1999.
[24] Born and Wolf, “Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (6th ed.),” Pergamon Press INC. pp. 37-38, 2013.
[25] https://www.microscopyu.com/microscopy-basics/resolution
[26] N. Rezeki, E. Utami, and I. Oyong, “Analysis on digital elevation model data for 3d modeling,” 2019 International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 24-25 July, pp. 147-152, 2019.
[27] L. Rayleigh, “Investigations in optics, with special reference to the spectroscope,” Philosophical and Journal of Magazine Science, vol. 8 no. 49, pp. 261-274, 1879.
[28] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the IRE, vol. 37, no. 1, pp. 10-21, 1949.
[29] https://www.piezosystem.com/
[30] https://navitar.com/
[31] https://sentech.co.jp/cn/index.html
[32] A. Rosenfeld and A.C. Kak, “Digital picture processing, 2, second ed,” Academic Press, San Diego, CA, 1982.
[33] K. Suzuki, I. Horiba, and N. Sugie, “Linear-time connected-component labeling based on sequential local operations,” Computer Vision and Image Understanding, vol. 89, no. 1, pp. 1-23, 2003.
[34] L. He, Y. Chao, and K. Suzuki, “A linear-time two-scan labeling algorithm,” IEEE International Conference on Image Processing, TX, USA, Sep. 16 – Oct. 19, 2007.
[35] T. Goto, Y. Ohta, M. Yoshida, and Y. Shirai, “High speed algorithm for component labeling,” IEICE Transactions on Information and Systems, vol. 21, no. 5, pp. 247-255, 1990.
[36] C. Fiorio and J. Gustedt, “Two linear time union-find strategies for image processing,” Theoretical Computer Science, vol. 154, no. 2, pp. 165-181, 1996.
[37] Y. Chauvin and D. E. Rumelhard, “Backpropagation theory, architectures, and applications,” New York, 1995.
[38] S. Karsoliya, “Approximating number of hidden layer neurons in multiple hidden layer bpnn architecture,” International Journal of Engineering Trends and Technology, vol. 3, no. 6, pp. 741-717, 2012.
[39] G. Wang, X. Xu, Y. Yao, and J. Tong, “A novel bpnn-based method to overcome the gps outages for ins/gps system,” IEEE Access, vol. 7, pp. 82134-82143, 2019.
[40] F. M. Ham and I. Kostanic, “Principles of neurocomputing for science & engineering,” McGraw-Hill Education-Europ, Jan. 2001.
[41] G. Cui, B. Su, and B. Cai, “The design of levitation controller based on bpnn with quantization factors for maglev yaw system of wind turnines,” 2019 Chinese Automation Congress (CAC), 22-24 Nov, Hangzhou, China, no. 19394465, pp. 4645-4650, 2019.
[42] Y. Song, S. Wu, and Y. Yan, “Development of self-tuning intelligent pid controller based on bpnn for indoor air quality control,” International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 11, pp. 283-290, 2013.
[43] Q. Song, J. Xiao, and Y. C. Soh, “Robust backpropagation training algorithm for multilayered neural tracking controller,” IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1133-1141, 1999.
[44] H. Chen, Z. Zouaoui, and Z. Chen, “A modified smith predictive scheme based back-propagation neural network approach for FOPDT processes control,” Journal of Process Control, vol. 23, no. 19, pp. 1261-1269, 2013.
[45] T. Yabuta and T. Yamada, “Learning control using neural networks,” IEEE International Conference on Robotics and Automation, Sacramento, California, USA, pp. 740-745, 1991.
[46] K. C. Chee and K.Y. Lee, “Diagonal recurrent neural networks for dynamic systems control,” IEEE Transactions on Neural Networks, vol. 6, no. 1, pp. 144-156, 1995.
指導教授 吳俊緯(Jim-Wei Wu) 審核日期 2022-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明