參考文獻 |
[1] G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett., vol. 56, no. 9, pp. 930–933, Mar. 1986.
[2] S. K. Nayar and Y. Nakagawa, “Shape from Focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16. no. 8, pp. 824-831, 1994.
[3] G. Binnig and H. Rohrer, “Scanning tunneling microscopy,” Helvetica Phys. Acta, vol. 55, pp. 726–735, 1982.
[4] J. Liu, J. Wang, and Q. Zou, “Decomposition-learning-based output tracking to simultaneous hysteresis and dynamics control: high-speed large-range nanopositioning example,” IEEE Transactions on Control Systems Technology, vol. 29, no. 4, pp. 1775-1782, 2021.
[5] Y. K. A. Nadawi, X. Tan, and H. K. Khalil, “Inversion-free hysteresis compensation via adaptive conditional servomechanism with application to nanopositioning control,” IEEE Transactions on Control Systems Technology, vol. 29, no. 5, pp. 1922-1935, 2021.
[6] Y. Tao, L. Li, H. X. Li, and L. Zhu, “High-bandwidth tracking control of piezoactuated nanopositioning stages via active modal control,” IEEE Transactions on Automation Science and Engineering, pp. 1-9, 2021.
[7] C. Yang, Y. Wang, and K. Y. Toumi, “Hierarchical antidisturbance control of a piezoelectric stage via combined disturbance observer and error-based adrc,” IEEE Transactions on Industrial Electronics, vol. 69, no. 5, pp. 5060-5070, 2022.
[8] X. Huang, W. Zhou, X. Li, L. Zhu, and H. T. Zhang, “Online koopman operator learning to identify cross-coupling effect of piezoelectric tube scanners in atomic force microscopes,” IEEE Transactions on Industrial Informatics, vol. 18, no. 2, pp. 1111-1120, 2022.
[9] Z. Feng, J. Ling, M. Ming, W. Liang, K. K. Tan, and X. Xiao, “Signal-transformation-based repetitive control of spiral trajectory for piezoelectric nanopositioning stages,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 3, pp. 1634-1645, 2020.
[10] R. Erni, M. D. Rossell, C. Kisielowski, and U. Dahmen, “Atomic-resolution imaging with a sub-50-pm electron probe,” Physical Review Letters, pp. 096101-1- 096101-4, Mar. 2009.
[11] E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv Für Mikroskopische Anatomie, vol. 9, pp.413-468, 1873.
[12] E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer “Near field scanning optical microscopy (nsom): development and biophysical applications,” Biophysical Journal, vol. 49, no. 1, pp. 269-279, 1986.
[13] S. Hell and E. H. K. Stelzer, “Properties of a 4pi confocal fluorescence microscope,” Journal of the Optical Society of America A, vol. 9, no. 12, pp. 2159-2166, 1992.
[14] J. M. Guerra, “Photon tunneling microscopy,” Applied Optics, vol. 29, no. 26, pp. 3741-3752, 1990.
[15] M. Saxena, G. Eluru, and S. S. Gorthi, “Structured illumination microscopy,” Advances in Optics and Photonics, vol. 7, no. 2, pp. 241-275, 2015.
[16] A. DiSpirito III, D. Li, T. Vu, M. Chen, D. Zhang, J. Luo, R. Horstmeyer, and J. Yao, “Reconstructing undersampled photoacoustic microscopy images using deep learning,” IEEE Transactions on Medical Imaging, vol. 40, no. 2, pp. 562-570, 2021.
[17] A. Shajkofci and M. Liebling, “Spatially-variant cnn-based point spread function estimation for blind deconvolution and depth estimation in optical microscopy,” IEEE Transactions on Image Processing, vol. 29, pp. 5848-5861, 2020.
[18] J. Curie and P. Curie, “Development, via compression, of electric polarization in hemihedral crystals with inclined faces,” Bulletin de la Société Minérologique de France, pp. 90-93, 1880.
[19] P. J. Chen and S. T. Montgomery, “A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity,” Ferroelectric, vol. 23, pp. 199-207, 1980.
[20] F. Preisach, “Über die magnetische nachwirkung,” Zeitschrift für Physik, vol. 94, pp. 277-302, 1935.
[21] Y. K. Wen, “Method for random vibration of hysteretic systems,” Journal of the Engineering Mechanics Division, vol. 102, no. 2, pp. 249-263, 1976.
[22] M. Goldfarb and N. Celanovic, “Modeling piezoelectric stack actuators for control of micromanipulation,” IEEE Control Systems Magazine, vol. 17, no. 3, pp. 69-79, 1997.
[23] H. Jung and D. G. Gweon, "Creep characteristics of piezoelectric actuators," Review of Scientific Instruments, vol. 71, no. 4, pp. 1895-1900, 1999.
[24] Born and Wolf, “Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (6th ed.),” Pergamon Press INC. pp. 37-38, 2013.
[25] https://www.microscopyu.com/microscopy-basics/resolution
[26] N. Rezeki, E. Utami, and I. Oyong, “Analysis on digital elevation model data for 3d modeling,” 2019 International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 24-25 July, pp. 147-152, 2019.
[27] L. Rayleigh, “Investigations in optics, with special reference to the spectroscope,” Philosophical and Journal of Magazine Science, vol. 8 no. 49, pp. 261-274, 1879.
[28] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the IRE, vol. 37, no. 1, pp. 10-21, 1949.
[29] https://www.piezosystem.com/
[30] https://navitar.com/
[31] https://sentech.co.jp/cn/index.html
[32] A. Rosenfeld and A.C. Kak, “Digital picture processing, 2, second ed,” Academic Press, San Diego, CA, 1982.
[33] K. Suzuki, I. Horiba, and N. Sugie, “Linear-time connected-component labeling based on sequential local operations,” Computer Vision and Image Understanding, vol. 89, no. 1, pp. 1-23, 2003.
[34] L. He, Y. Chao, and K. Suzuki, “A linear-time two-scan labeling algorithm,” IEEE International Conference on Image Processing, TX, USA, Sep. 16 – Oct. 19, 2007.
[35] T. Goto, Y. Ohta, M. Yoshida, and Y. Shirai, “High speed algorithm for component labeling,” IEICE Transactions on Information and Systems, vol. 21, no. 5, pp. 247-255, 1990.
[36] C. Fiorio and J. Gustedt, “Two linear time union-find strategies for image processing,” Theoretical Computer Science, vol. 154, no. 2, pp. 165-181, 1996.
[37] Y. Chauvin and D. E. Rumelhard, “Backpropagation theory, architectures, and applications,” New York, 1995.
[38] S. Karsoliya, “Approximating number of hidden layer neurons in multiple hidden layer bpnn architecture,” International Journal of Engineering Trends and Technology, vol. 3, no. 6, pp. 741-717, 2012.
[39] G. Wang, X. Xu, Y. Yao, and J. Tong, “A novel bpnn-based method to overcome the gps outages for ins/gps system,” IEEE Access, vol. 7, pp. 82134-82143, 2019.
[40] F. M. Ham and I. Kostanic, “Principles of neurocomputing for science & engineering,” McGraw-Hill Education-Europ, Jan. 2001.
[41] G. Cui, B. Su, and B. Cai, “The design of levitation controller based on bpnn with quantization factors for maglev yaw system of wind turnines,” 2019 Chinese Automation Congress (CAC), 22-24 Nov, Hangzhou, China, no. 19394465, pp. 4645-4650, 2019.
[42] Y. Song, S. Wu, and Y. Yan, “Development of self-tuning intelligent pid controller based on bpnn for indoor air quality control,” International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 11, pp. 283-290, 2013.
[43] Q. Song, J. Xiao, and Y. C. Soh, “Robust backpropagation training algorithm for multilayered neural tracking controller,” IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1133-1141, 1999.
[44] H. Chen, Z. Zouaoui, and Z. Chen, “A modified smith predictive scheme based back-propagation neural network approach for FOPDT processes control,” Journal of Process Control, vol. 23, no. 19, pp. 1261-1269, 2013.
[45] T. Yabuta and T. Yamada, “Learning control using neural networks,” IEEE International Conference on Robotics and Automation, Sacramento, California, USA, pp. 740-745, 1991.
[46] K. C. Chee and K.Y. Lee, “Diagonal recurrent neural networks for dynamic systems control,” IEEE Transactions on Neural Networks, vol. 6, no. 1, pp. 144-156, 1995. |