博碩士論文 109022002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.17.75.138
姓名 陳逸耘(Yi-Yun Chen)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 以人工神經網路及迴歸模型研發自動化及最佳化混凝程序
(Automation and Optimization Coagulation Procedures based on Artificial Neural Networks and Regression Models)
相關論文
★ 物聯網制動功能之互操作性解決方案★ 地理網路爬蟲:具擴充及擴展性之地理網路資源爬行架構
★ TDR監測資訊平台之改善與 感測器觀測服務之建立★ 利用高解析衛星立體像對產製近岸水底地形
★ 整合oneM2M 及OGC SensorThings API 標準建立開放式物聯網架構★ 巨量物聯網資料之多重屬性索引架構
★ 高效率異質性時序資料表示法辨別系統★ A TOA-reflectance-based Spatial-temporal Image Fusion Method for Aerosol Optical Depth Retrieval
★ An Automatic Embedded Device Registration Procedure for the OGC SensorThings API★ 基於本體論與使用者興趣之個人化地理網路搜尋引擎
★ 利用本體論整合城市模型及物聯網開放式標準探討智慧城市之應用★ 運用無人機及影像套合法進行混凝土橋梁裂縫檢測
★ GeoRank: A Geospatial Web Ranking Algorithm for a GeoWeb Search Engine★ 應用高時空解析度遙測影像融合於海水覆蓋率之監測
★ LoRaWAN Positioning based on Time Difference of Arrival and Differential Correction★ 類神經網路逆向工程理解遙測資訊:以Landsat 8植被分類為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-30以後開放)
摘要(中) 根據世界衛生組織所述,水是生命不可缺少的元素之一。淨水場是為人們提供自來水的重要基礎建設。在淨水場的複雜程序中,混凝作為淨水流程的第一道程序,尤為重要。目前,多數淨水場的混凝程序需仰賴廠內工作人員之主觀判斷,並輔以杯瓶試驗(Jar test)進行加藥作業。然而,由於原水水質變異性大,若要即時針對不同的水質條件調整加藥量,將會提升人力負擔。近年來物聯網(Internet of Things,IoT)以及人工智慧(Artificial Intelligence,AI)技術發展快速且日益普及,若能將此技術引入混凝程序,得以更加自動和智能地處理。因此,本研究旨在應用AIoT(Artificial Intelligence of Things)實現自動化及最佳化的混凝程序,以達到節省能源、降低成本之目的。自動化程序係指運用AI及統計模型依據水質條件模擬操作人員對混凝劑劑量之判斷,並利用水量及理論公式計算攪拌轉速。而最佳化程序係指以水質條件、混凝劑劑量、轉速等訓練資料,通過AI及統計模型推估對應的濁度變化量,並考量飲用水水質標準及藥劑與能源成本後,求得最佳化操作參數。結果表明,自動化程序中長短期記憶模型之準確性較高,其RMSD(Root-Mean-Square Difference)為0.0013 ppm,而最佳化模型中多元非線性迴歸之準確性較高,其RMSD為1.57 NTU。整體而言,不論是自動化程序或最佳化程序皆可以依據水質的變化,準確地推估混凝相關之操作參數。
摘要(英) According to the World Health Organization, water is one of the indispensable elements of life. Water treatment plants are the infrastructure to provide people with clean water. Within the complex procedure in water treatment plants, coagulation is particularly important as the first procedure of the water treatment process. At present, most water treatment plants require a lot of manual judgement on coagulation process through regular jar test and sensor observations. However, to deal with the dynamically changing nature of water quality and water volume, the coagulation dosing procedure becomes a labor-intensive task. With the recent development of Artificial Intelligence of Things (AIoT), this procedure could be handled automatically and intelligently. Therefore, this research aims on applying the AIoT to achieve an optimized and intelligent coagulation dosing procedure for the purpose of saving energy and reducing costs. The proposed automation procedure refers to the use of Artificial Intelligence (AI) and statistical models to simulate human decisions on the coagulant dosage based on water quality, and the use of the water volume and theoretical formula to calculate the mixing speed. In addition, the proposed optimization procedure refers to estimating the turbidity change through AI and statistical models based on water quality, coagulant dosage, and mixing speed, which consequently helps estimate the lowest cost of coagulant dosage and energy consumption that satisfies operation standards. The results show that the Long Short-Term Memory achieves the highest accuracy of 0.0013 ppm Root-Mean-Square Difference (RMSD) among the examined models in the automation procedure, while the Multiple Non-Linear Regression achieves the highest accuracy of 1.57 NTU RMSD in the optimization procedure. In general, both procedures can accurately estimate the coagulant dosage and mixing speed settings according to the changes of water quality.
關鍵字(中) ★ 淨水處理
★ 混凝程序
★ 自動化
★ 最佳化
★ 人工智慧
★ 物聯網
關鍵字(英) ★ Water treatment
★ Coagulant procedure
★ Automation
★ Optimization
★ Artificial Intelligence
★ Internet of Things
論文目次 摘要 i
Abstract ii
表目錄 iv
圖目錄 v
一、 緒論 1
1-1 研究背景 1
1-2 研究目的 2
二、 文獻回顧 4
2-1 AIoT(Artificial Intelligence of Things) 5
2-2 人工神經網路模型及特性 8
2-3 迴歸模型 10
三、 研究方法 11
3-1 資料蒐集 11
3-2 資料前處理 15
3-3 初步分析 18
3-4 模型選擇與開發 21
3-5 模型建置及優化 22
3-6 模型驗證 24
四、 研究成果 26
4-1 自動化程序之驗證 26
4-2 最佳化程序之驗證 29
五、 結論與未來工作 32
5-1 結論 32
5-2 未來工作 32
參考文獻 33
參考文獻 [1] WHO and UNICEF, “Progress on sanitation and drinking water 2013 update”, World Health 1, pp. 1-40, 2013.
[2] T.R. Camp, “Flocculation and flocculation basins”, Transactions of the American Society of Civil Engineers, vol. 120, no. 1, pp. 1-16, 1955.
[3] 廖世芳、廖述良、余瑞芳、宋家敏、陳美枝、陳孟春,「自來水處理系統操作最佳化之研究」,自來水協會研究報告,民國88年。
[4] 黃志彬、甘其銓、張進興,「淨水廠混凝監測及加藥控制之研究」,第十四屆自來水研究發表會報告,61-71頁,民國86年。
[5] C.G. García, E.R.N. Valdez, V.G. Díaz, B.C.P.G. Bustelo & J.M.C. Lovelle. “A review of artificial intelligence in the internet of things” International Journal Of Interactive Multimedia And Artificial Intelligence, vol. 5, no. 4, pp. 9-20, 2019.
[6] M.H. Baouab & S. Cherif, “Prediction of optimal dose coagulant for various potable water treatment processes through artificial neural network”, Journal of Hydroinformatics, vol. 20, no. 6, pp. 1215-1226, 2018.
[7] F.C.R.D. Santos, A.F.H. Librantz, C.G. Dias & S.G. Rodrigues, “Intelligent system for improving dosage control”, Acta Scientiarum. Technology, vol. 3, no. 1, pp. 33-38, 2017.
[8] X.Y. Deng & C.U. Lin, “Application of ELM to predict the coagulant dosing in water treatment plants”, Water Science & Technology: Water Supply, vol. 17, no. 4, pp. 1053-1061, 2017.
[9] 洪銘佑,「混凝程序中加藥組合及攪拌強度對顆粒去穩定之影響 - 模廠試驗」,國立交通大學,碩士論文,民國102年。
[10] D.E. Rumelhart, G.E. Hinton & R.J. Williams, “Learning representations by back-propagating errors”, Nature, vol. 323, pp. 533-536, 1986.
[11] G.B. Huang, Q.Y. Zhu & C.K. Siew, “Extreme learning machine: theory and applications”, Neurocomputing, vol. 70, no. 1, pp. 489-501, 2005.
[12] S. Hochreiter & J. Schmidhuber, “Long short-term memory”, Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[13] S.I. Abba, Q.B. Pham, A.G. Usman, N.T.T. Linh, D.S. Aliyu, Q. Nguyen & Q.V. Bach, “Emerging evolutionary algorithm integrated with kernel principal component analysis for modeling the performance of a water treatment plant”, Journal of Water Process Engineering, vol. 33, no. 101081, pp. 1-12, 2020.
[14] A. Ghosh, D. Chakraborty & A. Law, “Artificial intelligence in Internet of things”, CAAI Transactions on Intelligence Technology, vol. 3, no. 4, pp. 208-218, 2018.
[15] H. Kukreja, N. Bharath, C.S. Siddesh & S. Kuldeep, “An Introduction to Artificial Neural Network”, IJARIIE, vol. 1, no. 5, pp. 27-30, 2016.
[16] S. Madakam, R. Ramaswamy & S. Tripathi, “Internet of Things (IoT): A Literature Review”, Journal of Computer and Communications, vol. 3, no. 5, pp. 164-173, 2015.
[17] G. Carlos, “Artificial Neural Networks for Beginner”, arXiv preprint cs/0308031, 2003.
[18] S. Kuldeep & G.S. Anitha, “Neural Network Approach for Processing Substation Alarms”, International Journals of Power Electronics Controllers and Converters, vol. 1, no. 1, pp. 21-28, 2015.
[19] K. Greff, R.K. Srivastava, J. Koutník, B.R. Steunebrink & J. Schmidhuber, “LSTM: A Search Space Odyssey”. IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 10, pp. 2222–2232, 2015.
[20] J.O. Rawlings, S.G. Pantula & D.A. Dickey, (Eds.), Applied Regression Analysis., Springer Texts in Statistics, 1998.
[21] G.A.F. Seber & C.J. Wild, (Eds.), Nonlinear Regression, John Wiley and Sons, New York, 1989.
[22] P. Barbiero, S. Giovanni, and T. Alberto. “Modeling generalization in machine learning: A methodological and computational study” arXiv preprint arXiv:2006.15680, 2020.
[23] 廖仲洲、吳美慧、姚寶蓮、楊詩思、黃永富、杭子樵、蘇金龍,「板新給水廠白濁水期間淨水處理之最佳加藥條件探討」,自來水協會會刊,第27卷第4期,24-32頁,民國97年。
指導教授 黃智遠(Chih-Yuan Huang) 審核日期 2022-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明