![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:8 、訪客IP:3.22.248.193
姓名 廖團訓(Tuai-Shu Lai) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
(On the Study of the Sequential Eigenstructure Assignment and Its Application to Mode Decoupling and Minimum Eigenvalue Sensitivity)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 近年來,為改善全狀態特徵結構設計方法之無法容易獲得非奇異模式矩陣的共同缺點,於是順序式的特徵結構設計方法被提出來。所謂的順序式的特徵結構設計方法,即一次僅從開迴路系統中設計一個或一群特徵結構到閉迴路系統。
在本論文中,我們透過狀態迴授控制,提出另一種順序式的特徵結構設計方式。其優點為可將原來的開迴路系統以對角化形式分解成較簡單的設計結構形式,且可容易的設計出非奇異的模式矩陣。而本篇所提出的順序特徵結構方法也成功的被應用在特徵模子去耦合和最小化特徵值靈敏度上。摘要(英) In recent year, a sequential eigenstructure assignment method, which can improve the common disadvantage of the entire eigenstructure assignment method, is proposed. In the algorithm of the sequential eigenstructure assignment method, only one or a group of eigenvectors are assigned at one time. It is easier to achieve the invertible modal matrix in the sequential eigenstructure assignment method than that
in the entire eigenstructure assignment method.
In this thesis, we propose an alternative scheme for the sequential eigenstructure assignment via linear state-variable feedback, which has the simple structure and time-saving decomposition for the original system matrix. And it has successful application to minimum eigenvalue sensitivity and mode decoupling for linear multi-input systems.關鍵字(中) ★ 順序特徵結構設計
★ 特徵模子去耦合
★ 最小特徵值靈敏度關鍵字(英) ★ sequential eigenstructure assignment
★ mode decoupling
★ minimum eigenvalue sensitvity論文目次 TABLE OF CONTENT
page
Abstract
Table of Content
List of Figures
Chapter 1 Introduction
1.1 The Statements of Eigenstructure Assignment Problem
1.2 The Survey of Eigenstructure Assignment Methods
1.3 The Description of Sequential Eigenstructure Assignment
1.4 The Motivation of Proposed Sequential Eigenstructure Assignment
1.5 Organizations
Chapter 2 Preliminary Theory of Sequential Eigenstructure Assignment
2.1 Problem Statements of Sequential Eigenstructure Assignment
2.2 Main Results of Proposed Sequential Eigenstructure Assignment
2.3 Illustrative Examples for Main Results of Proposed Sequential Eigenstructure assignment
2.4 Brief summary
Chapter 3 Sequential Eigenstructure Assignment with Complex and Repeated Eigenvalues
3.1 Assigning the Distinct Open-loop Eigenvalues to the Complex-conjugate
Closed-loop Eigenvalues.
3.2 Assigning the Complex-conjugate Open-loop Eigenvalues to the Repeated
Closed-loop Eigenvalues
3.3 Assigning the Repeated Open-loop Eigenvalues to the Repeated Closed-
loop Eigenvalues.
3.4 Assigning the Repeated Open-loop Eigenvalues to the Distinct Closed-loop Eigenvalues.
3.5 Brief Summary
Chapter 4 Applications of Sequential Eigenstructure Assignment
4.1 Sequential Eigenstructure Assignment with Mode Decoupling
4.1.1 Problem Statements of Sequential Eigenstructure Assignment with Mode
Decoupling
4.1.2 The Eigenvector Assignment with Mode Decoupling 5
4.2 Sequential Eigenstructure Assignment with Minimum Eigenvalue
Sensitivity
4.2.1 Problem Statements of Sequential Eigenstructure Assignment with
Minimum Eigenvalue Sensitivity
4.2.2 The Eigenvector Assignment with Minimum Eigenvalue
Sensitivity
4.3 Sequential Eigenstructure Assignment with Mode Decoupling and
Minimum Eigenvalue Sensitivity
4.3.1 Problem Statements of Sequential Eigenstructure Assignment with Mode
Decoupling and Minimum Eigenvalue Sensitivity
4.3.2 The Algorithm for Mode Decoupling and Minimum Eigenvalue
Sensitivity
4.3.3 Illustrative Examples of The Algorithm for Mode Decoupling and
Minimum Eigenvalue Sensitivity
4.4 Brief Summary
Chapter 5 Conclusions and Suggestions
References
List of Figures
Page
Fig 1.1 Entire eigenstructure assignment
Fig 1.2 Sequential eigenstructure assignment
Fig 2.1 The j’th sequential of sequential eigenstructure assignment參考文獻 [1] A.N. Andry, Jr, E.Y. Shapiro, and J.C. Chung: “Eigensturcture Assignment for linear systems”, IEEE Trans. On Aerospace and Electronic systems Vol. 19, No. 5, pp. 711-729, 1983.
[2] T.J. Owens and J. O’Reilly: “Parametric state-feedback control for arbitrary eigenvalue assignment with minimum sensitivity”, IEE Proceeding Pt. D, 136, pp. 307-312, 1989.
[3] I. Chouaib and B. Pradin; “On mode decoupling and minimum sensitivity by eigenstructure assignment”, IEEE 7th Mediterranean Electrotechnical Conference. Proceeding vol. 2, pp. 663-6, 1994.
[4] B.C. Moore: “On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment”, IEEE Trans. Automatic Control, vol. 21, pp. 689-692, 1976.
[5] M.M. Fahmy and J. O’reilly: “On eigenstructure assignment in linear multivariable systems”, IEEE Trans. Automatic Control, AC-27, 3, pp. 690-693, 1982.
[6] M.M. Fahmy and J. O’reilly: “Eigenstructure assignment in linear multivariable systems-A parametric solution”, IEEE Trans. Automatic Control, AC-27, 4, pp. 991-993, 1983.
[7] M.M. Fahmy and H.S. Tantawy: “Eigenstructrue assignment via linear state-feed-back control”, Int. J. Control, 40, pp. 161-178, 1984.
[8] J. Kautsky, N.K. Nichols and P. Van Dooren: “Robust pole assignment in linear state feedback”, Int. J. Control, vol. 41, No. 5, pp. 1129-1155, 1985.
[9] G. Roppenecker: “On parametric state feedback design”, Int. J. Control, 43, pp. 793-804, 1986.
[10] J.J. Lin and Y.C. Wu: “Parametric multiple eigenvalue shifting with minimum eigenvalue sensitivity via state-feedback based on block Schur Form”, Control-theory and Advanced Technology Vol.10, No.3, pp.347-364, 1994.
[11] V. Gourishankar and K. Ramar: “Pole assignment with minimum eigenvalue sensitivity to plant parameter variations”, Int. J. Control, 23, pp. 493-504, 1976.
[12] G.P. Liu and R.J. Patton: “Parametric state feedback design of multivariable control systems using eigenstructure assignment”, Proceedings of the 32nd conference on Decision and Control, 1993.
[13] B. Porter and J.J. D’Azzo: “Algorithm for closed-loop eigenstructure assignment by state feedback in multivariable linear systems”, Int. J. Control, Vol. 27, pp.943-947, 1978.
[14] B. Porter and J.J. D’Azzo: “Closed-loop eigenstructure assignment by state feedback in multivariable linear systems”, Int. J. Control, Vol. 27, pp.487-492, 1978.
[15] S. Askarpour, T.J. Owens: “Integrated approach to eigenstructure assignment by state feedback”, IEE Proc.-Control Theory Appl. Vol. 146, No. 2, 1999.
[16] J. Ensor, R. Davies: “Assignment of reduced sensitivity eigenstructure”, IEE Proc.-Control Theory Appl., Vol. 147, No, 1, 2000.
[17] W. M. Wonham: “On pole assignment in multi-input, controllable linear system”, IEEE Trans. Automatic Control AC-12, pp. 660-665, 1967.
[18] J.J. Lin and H.Y. Chung: “Sequential eigenstructure assignment with minimal state-feedback gain”, Journal of the Chinese Institute of Engineers, Vol. 22, No. 2, pp. 149-157, 1999.
[19] G. Roppenecker: “Pole assignment by state feedback”, Regelung-stechnik, 29, pp. 228-233, 1981.
[20] J.H. Wilkinson: “The algebraic eigenvalue problem”, Oxford University Press, 1965.
[21] B. Porter and T.R. Crossley: “Modal Control Theory and Application”, Taylor and Francis, London, 1972.
[22] R.F. Wilson, J.R. Cloutier, and R.K. Yedavalli: “Lyapunov-constrained eigenstructure assignment for the design of robust mode-decoupled roll-yaw missile autopilots”, IEEE Conf. On Control Application, pp. 994-999, 1992.
[23] A. Graham: “Kroneceker Products and Matrix Calculus with Applications”, John Wiley and Sons, New York, pp. 38, 1981.
[24] P. Apkarian: “Robustesse de la connande des systemes multivariable, application an pilotage d’unhelicoptere,” these de doctorat, Ensae-Cert, Toulouse-France, 1988.
[25] J.H. Wilkinson: “The Algebraic Eigenvalue Problem”, Oxford University Press, 1965.指導教授 詹益仁(Yi-Jen Chan) 審核日期 2000-8-4 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare