博碩士論文 104353012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:18.117.148.105
姓名 徐紹慶(Shao-Ching Hsu)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 在微影製程中旋轉塗佈實驗之正型光阻減量的研究
(The Research on Positive Photoresist Reduction of Spin Coating Experiment in Photolithography Process)
相關論文
★ 輝度與色彩均勻化之發光二極體直下式背光模組應用設計★ 薄型化LCD直下式背光模組設計
★ 非對稱型光分佈的發光二極體照明裝置之研究★ 應用平行光互連技術於40Gb/s的光收發次模組之封裝技術
★ 大尺寸發光二極體側光式背光模組散熱技術★ 灰化製程對鉻及氧化銦錫接觸阻抗之影響
★ 導光式發光框條的光學設計與驗證★ 直下式LED液晶觸控顯示器之研究
★ 全周光裝飾型LED燈泡之研究★ 卷對卷技術應用於凹形微透鏡膜製造之分析
★ 複合式多波長驗鈔裝置探討★ 液晶顯示器品質提升之研究
★ 一種應用於特定工程圖表影像的文字智慧辨識與提取之技術研究★ 寬頻光方向耦合器使用數種權重函數之結構最佳化設計
★ 線上近紅外線穿透光檢測系統應用於不織布製程設備之研究★ 遠端螢光粉LED光學效能提升之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 微影製程是半導體製造技術最關鍵技術之一,微影製程主要含塗佈光阻、曝光、顯影三步驟。近年來因環保減碳意識抬頭及企業的成本管控等考量,減少光阻使用量正成為各家半導體公司及相關科技行業著墨的重點之一,本研究主要就是針對微影製程之旋轉塗佈部分的正型光阻用量,進行減量實驗,藉由改善旋轉塗佈製程實驗參數的調整,尋求較佳的製程參數組合,並驗證所得之優化參數結果是否符合現行規格與量產條件。
本實驗選用12吋雙面拋光矽晶圓,以正型光阻減量優化為目標導向,探討旋轉塗佈製程參數於正型光阻減量的過程中,對光阻薄膜厚度平均值、厚度間距差值與晶圓表面光阻覆蓋品質的影響,其中包含旋轉塗佈模組變異、光阻消耗減少溶劑預塗轉速、初轉速、主轉速,並研究與分析量產的可行性。由實驗結果得知,在正型光阻減量並改變增加初轉速度時,其光阻薄膜厚度平均值結果不變,但厚度間距差值結果逐漸變差。後續藉由光阻消耗減少溶劑預塗轉速與初轉速的配置變化,對於正型光阻減量的過程中,所造成厚度間距差值變差的結果而有所改善。本文最後正型光阻減量優化結果,藉由旋轉塗佈製程的優化可將原正型光阻使用量由0.9g減量至0.6g,再經由正型光阻減量旋轉塗佈穩定性與產品驗證相關項目結果分析,均與正型光阻減量前無所差異,預計可減少約33.3%的光阻使用成本。

由本實驗研究最後所獲得之成果與結論,用意在於建立一套快速有效的模式與方法,爾後在評估不同種類、不同黏滯係數的光阻於微影製程應用中,有利於縮短光阻塗佈製程條件之調整時程,能較快找出適合量產的製程參數及優化整體生產效益,同時期許能貢獻提供給半導體及其相關科技業界,在光阻塗佈製程領域之參考。
摘要(英) The photolithography process is one of the most critical technologies in semiconductor manufacturing technology, the photolithography process mainly includes three steps: coating photoresist, exposure, and development. In recent years, due to the rising awareness of environmental protection and carbon reduction and the cost control of enterprises, reducing the amount of photoresist is becoming one of the emphases of various semiconductor companies and related technology industries. This research is mainly aimed at the spin coating part of the photolithography process. The amount of positive photoresist used in the experiment was reduced, and by improving the adjustment of the experimental parameters of the spin coating process, a better combination of process parameters was sought, and the results of the optimized parameters are verified to meet the current specifications and mass production conditions.
In this experiment, a 12-inch double polished silicon wafer is selected, and the optimization of positive photoresist reduction was the goal. We study the influence to the difference between film thickness mean value, film thickness range value, and the quality of photoresist coverage on the wafer surface during the process of reducing the positive photoresist. The conducted factors used in the spin coating process includes the variation of spin coating module, RRC (Reduced Resist Consumption) pre-wetting speed, spin-up speed and spin-off speed, we also study and analyze the feasibility of mass production. The experimental results show that when the positive photoresist is reduced and the spin-up speed is changed, the film thickness mean value remains unchanged, but the film thickness range value gradually become worse. Furthermore, by conducting the configuration changes of the RRC pre-wetting speed and spin-up speed, the worsening phenomenon of the film thickness range value during the process of positive photoresist reduction has been improved. The study demonstrates the optimization result of the positive photoresist weight reduction, through the optimization of the spin coating process, the original positive photoresist usage can be reduced from 0.9g to 0.6g. Moreover, through the analysis result of the positive photoresist weight reduction spin coating stability and product verification test items, it shows no difference of the stability and test results before and after the positive photoresist reduction. It is expected to reduce the cost of photoresist by about 33.3%.
The results and conclusions obtain in this experimental study are intended to establish a set of fast and effective models and methods to further shorten the time to adjust photoresist coating manufacturing parameter while evaluating different types of photoresist with different viscosity coefficients in the application of the photolithography process. This method can help to target on the manufacturing parameter good for mass production and optimize the overall production efficiency. Moreover, it is expected that this method can be contributed to the semiconductor and related technology industries as a reference in the field of photoresist coating process.
關鍵字(中) ★ 微影製程
★ 光阻
★ 旋轉塗佈
關鍵字(英) ★ photolithography process
★ photoresist
★ spin coating
論文目次 摘要 i
Abstract iii
致謝 vi
目錄 vii
圖目錄 xi
表目錄 xiv
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 論文架構 3
第二章 文獻回顧 4
2-1 微影製程 (Photolithography process) 簡介 4
2-2 微影製程程序簡介 6
2-2-1 氣相塗底 (HMDS priming) 7
2-2-2 旋轉塗佈 (Spin coating) 8
2-2-3 軟烘烤 (Soft baking) 9
2-2-4 曝光 (Exposure) 9
2-2-5 曝光後烘烤 (Post Exposure Bake, PEB) 11
2-2-6 顯影 (Development) 13
2-2-7 硬烘烤 (Hard baking) 13
2-2-8 顯影後檢視 (After Developer Inspection) 14
2-3 光阻劑簡介與未來發展 17
2-3-1 聚合物 (Polymer) 17
2-3-2 感光劑 (Sensitizer) 17
2-3-3 溶劑 (Solvent) 17
2-3-4 添加劑 (Additives) 18
2-4 光阻特性 19
2-5 光阻旋轉塗佈步驟 20
2-5-1 動態置液程序 (Dynamic dispense process) 22
2-5-2 旋開光阻程序 (Spin-up process) 22
2-5-3 降速程序 (Deceleration process) 23
2-5-4 定速旋乾溶液程序 (Spin-off process) 23
第三章 研究方法 26
3-1 實驗材料與設備 26
3-2 實驗方法與流程 30
3-2-1 旋轉塗佈模組變異確認 32
3-2-2 正型光阻減量優化實驗 34
3-2-3 正型光阻減量旋轉塗佈穩定性實驗 36
3-2-4 產品驗證 37
第四章 結果與討論 38
4-1 旋轉塗佈模組變異確認 38
4-1-1 確認RRC溶劑噴嘴與光阻噴嘴位置 38
4-1-2 確認正型光阻噴量的穩定性 41
4-2 正型光阻減量優化實驗 43
4-2-1 正型光阻減量優化實驗探討 43
4-2-2 正型光阻減量優化結果分析 53
4-3 正型光阻旋轉塗佈穩定性實驗 55
4-3-1 正型光阻旋轉塗佈連續性測試 55
4-3-2 正型光阻旋轉塗佈非連續性測試 57
4-4 產品驗證 59
4-4-1 產品晶圓表面光阻塗佈狀態檢視 59
4-4-2 關鍵線寬尺寸(CD)量測 61
4-4-3 晶圓剖面結構分析 62
五、結論 63
參考文獻 65
參考文獻 [1] M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Prentice Hall,U, USA, 2000.
[2] Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice Hall, USA, 2001.
[3] (美) 蕭宏(Hong Xiao) 著,半導體製程技術導論,羅正忠、張鼎張譯,台灣培生教育出版股份有限公司,台北,2002。
[4] CH06-Photolithography Document
取自https://www.academia.edu/30868177/Chapter_6_Photolithography。
[5] TKchap7-1 Document
取自http://homepage.ntu.edu.tw/~nlw001/handouts/semi-TK/TKchap7-1.pdf。
[6] 楊金成、柯富祥和吳政三,「自動化阻劑處理系統介紹」,科儀新知,22卷4期,46~61頁,90年2月。
[7] 龍文安,半導體微影技術,五南圖書出版股份有限公司,台北,2004。
[8] 楊子明、鍾昌貴、沈志彥、李美儀、吳鴻佑和詹家瑋,半導體製程設備技術,五南圖書出版股份有限公司,台北,2014。
[9] M. Hepher, J. Phot. Sci., 12 , 181 , 1964.

[10] N. Saburo, U. Takumi, and I. Toshio, “Microlithography fundamentals in semiconductor devices and fabrication technology”, Marcel Dekker, New York, 65-132 (1998).
[11] L.F. Thompson, C.G. Wilson, and M.J. Bowden, “Introduction to Microlithogaphy”, ACS Symposium Series 219, ACS, Washington, 87 (1983).
[12] Norman S. Allen, J. Photochemistry and photobiology A: Chemistry 100, 101-107,1996.
[13] 柯富祥和蔡輝嘉,「光學微影術中光阻的發展趨勢」,毫微米通訊,5卷3期,42~49頁,1998。
[14] K. Sugimoto, Progress in I-line Photoresist Development, JSR Technical Presentation, May 13 (1998).
[15] K. Sugimoto, Progress in KrF Resist Development, JSR Technical Presentation, May 13 (1998).
[16] R. Allen, Progress in 193 nm Photoresists, Semiconductor International, 73, Sep. (1997).
[17] 陳靖函:產業技術評析半導體用光阻劑之發展概況。2020年8月26 日,取自https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=322。
[18] D. van Steenwinckel et al., J. Vac. Sci. Tech. B, vol. 24, 316-320,2006.
[19] M. Shirai , M. Tsunooka, Prog. Polym. Sci., 21, 1 (1996).
[20] Bornside,D.E.,Macosko, C.W., and Scriven, L.E., “Modeling of Spin Coating”, J. imag. technol.,Vol.13, pp.122-130, August 1987.
[21] T. Yada, M. Aoki, T. Maejima, and A. Ishizu, “Formation of a positive photoresist thin film by spin coating: influence of atmospheric temperature“, Jpn. J. Appl. Phys., vol.36, pp. 372-377, January 1997.
[22] E. J. Watson, “The radial spread of a liquid jet over a horizontal plane”, J.Fluid Mech., Vol.20, pp.481-499, November 1964.
[23] F. Melo, J. F. Joanny, and S. Fauve, “Fingering instability of spinning drops”, Phys. Rev. Lett., Vol. 63, pp. 1958-1961, October 1989.
[24] M Kulkarni, S Sahoo, P Doshi and AV Orpe, Kulkarni, “Fingering instability of a suspension film spreading on a spinning disk ”, Phys. Rev. Lett., 63(18) , 1958.
[25] 周復初、卓浩江和王明文,「轉速對旋轉塗佈液膜穩定的影響」,中國工程師學會第十六屆全國學術研討會,1999。
[26] 卓浩江,「轉速對旋轉塗佈液膜穩定的影響」,國立中央大學,碩士論文,1998.
[27] 余宣魁,「預塗表面對旋轉塗佈的影響」,國立中央大學,碩士論文,1999.
[28] ASML,取自https://www.asml.com/en/products/duv-lithography-systems。
[29] TEL,取自 https://www.tel.com/product/lithius.html#product5350。

[30] Hitachi,取自 https://www.hitachi-hightech.com/tw/products/device/index.html。
[31] FEI,取自 https://www.fei.com/home/#gsc.tab=0。
[32] TEL, “TEL Clean Track LITHIUS Basic Operations Manual”, Document No.5797-101003-25, 2016.
[33] ViBRA 新光電子株式,取自 https://www.vibra.co.jp/。
[34] TEL, “TEL Clean Track LITHIUS Operations Manual”, Document No.5797-100008-27, 2018.
[35] TEL, “TEL Clean Track LITHIUS Maintenance Manual”, Document No.5797-201906-23, 2022.
指導教授 陳奇夆(Chi-Feng Chen) 審核日期 2022-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明