博碩士論文 109353019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.145.186.6
姓名 黃惠楨(Huei-Chen Huang)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 新型乾法加工技術構建之高性能超細鑽石砂輪開發研究
(A novel dry processing technique to construct a high-performance superfine diamond grinding wheel with thermal and material characterizations)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究開發一種新型的乾式混合造孔劑之技術用以製作高性能超細目鑽石砂輪,研究採用了砂輪的單批次生產過程,其優點是不使用樹酯液作為添加的黏合劑。由於沒有濕潤劑的使用,可以避免超細鑽石磨料、超細結合劑及造孔劑在混合過程中產生結塊,於大批量的生產可以實現整體砂輪混合的均一性,而將混合錯誤和人為因素造成的混合不均勻降到最低。此外研究中之低溫燒結可以有效地減少碳足跡,在較低的燒結溫度620℃下,砂輪擁有更高的孔隙率(~82%)且微觀結構呈現出均勻的大氣孔,這對晶圓表面的去除和研磨過程中可避免晶圓燒焦。研究以熱重-差示掃描量熱儀(TG-DSC)來測定超細結合劑的熱流和重量損失。利用光學非接觸式分析儀對超細結合劑粉末進行分析,以及設定砂輪的燒結溫度與升溫曲線。掃描電子顯微鏡(SEM)圖像顯示,燒結後孔隙結構沒有分層、特大連通孔和微結構損傷。原子力顯微鏡(AFM)、雷射掃描數位顯微鏡(LSCM)和掃描電子顯微鏡結果顯示,研磨後的矽(Si)表面粗糙度低至6nm,沒有深的刮痕,而且損傷層低於0.7μm。這項研究提供了一種新的方法為乾式超細鑽石砂輪製造技術,以製作出的新型砂輪用於矽晶圓研磨,實現以研磨方式來取代部分化學拋光(CMP)製程,並有效減少拋光時間。
摘要(英) A novel dry process that prepared in mixing with a pore-forming agent employs a single batch process in production of grinding wheels with the advantage without using resin liquid as an additive binder. The agglomeration of a pore-forming agent can be avoided due to no dressing agent mixing with the superfine diamond abrasives and binders. Bulk mass production can still ensure to fulfill the excellent homogeneity in mixing cross the entire grinding wheel. Therefore, an uneven mixing caused by mixing errors and human factors can be minimized. The grinding wheel can reach an ultrahigh porosity (~82 %) at a lower sintering temperature of 620 °C. Low-temperature sintering can effectively reduce the carbon footprint. A thermogravimetric-differential scanning calorimeter (TG-DSC) was used to determine the thermal properties of superfine frits. Further characterization of ultrafine binders by an optical non-contact dilatometry is utilized to set-up a protocol sintering plan of grinding wheels. Microstructure from scanning electron microscope (SEM) measurement on grinding wheel presents a uniform large pore structure which offers a benefit to wafer surface removal and less scorching during grinding. Atomic force microscopy (AFM), laser scanning digital microscope (LSCM) and SEM results revealed that the ground silicon (Si) wafer had a low surface roughness (~ 6 nm), without deep scratches, and with a low damaged layer (~0.7 μm) respectively. The wear test on grinding wheels demonstrates it is very cost effective to use a dry processing wheel. This work provides a new method for grinding Si wafers with a new type of wheel being developed by a novel dry superfine diamond grinding technique in a manufacturing process. It is realized that the use of a dry grinding process can save part of chemical polishing process (CMP) and effectively reduces the polishing time.
關鍵字(中) ★ 乾式混合
★ 低溫結合劑
★ 玻璃熔塊釉
★ 超細鑽石砂輪
★ TG-DSC
★ 孔隙率
關鍵字(英) ★ Dry process
★ Low temperature binder
★ Frits
★ Superfine diamond grinding wheel
★ TG-DSC
★ Porosity
論文目次 摘要 I
Abstract III
誌謝 IV
圖目錄 VII
表目錄 IX
第一章緒論 1
1.1前言 1
1.2研究動機與目的 2
第二章文獻回顧 3
2.1半導體材料 3
表1.Si、GaAs、碳化矽及GaN 物理特性表 4
2.2半導體研磨砂輪 5
2.3超細鑽石陶瓷結合劑砂輪的製造 8
第三章實驗程序 10
3.1 材料 12
3.2製造超細目鑽石砂輪 14
3.3超細玻璃料和超細鑽石砂輪的燃燒特性 17
3.4研磨測試 21
第四章結果與討論 23
4.1 H輪配方 23
4.2 H輪與V輪比較 30
4.3研磨結果 32
第五章結論 39
第六章未來展望 40
參考文獻 42
設備照片 48
參考文獻 [1] Z.J. Pei, G.R. Fisher, J. Liu, Grinding of silicon wafers: a review from historical perspectives, Int. J. Mach. Tools Manuf. 48 (2008) 1297–1307
[2] J.B. Dai, W.F. Ding, L.C. Zhang, J.H. Xu, H.H. Su, Understanding the effects of grinding speed and undeformed chip thickness on the chip formation in high-speed grinding, Int. J. Adv. Manuf. Technol. 81 (2015) 995–1005
[3] M. Segal, Material history learning from silicon, Nature 483 (2012) S43–S44
[4] K. Nakajima, K. Fujiwara, W. Pan, H. Okuda, Shaped silicon-crystal wafers obtained by plastic deformation and their application to silicon-crystal lenses, Nat. Mater. 4 (2005) 47–50.
[5]X. H. Zhang, Z J. Pei, G. R. Fisher, A grinding-based manufacturing method for silicon wafers: generation mechanisms of central dimples on ground wafers, Int. J. Mach. Tool Manuf. 46 (2006) 397–403.
[6] F.W. Huo, D. M. Guo, G. Feng, R. K. Kang, R. L. Wang, A new kinematics for ultra precision grinding of conical surfaces using a rotary table and a cup wheel, Int. J. Mach. Tool Manuf. 59 (2012) 34–45.
[7]Alves LFS, Gomes RCM, Lefranc P, Pegado R de A, Jeannin P-O, Luciano BA, et al.碳化矽 power devices in power electronics: an overview. 2017 Brazilian Power Electron. Conf. 2017:1–8.
[8] N. Yan, W. Miao, Y. Zhao, M. Liu, L. Wang, Y. Li, D. Zhao, Q. Zou, M. Wang, Effects of titania films on the oxidation resistance and dispersibility of ultrafine diamond, Mater. Lett. 141 (2015) 92–95.
[9] W. Miao, N. Yan, Y. Zhao, M. Liu, Y. Li, L. Wang, Q. Zou, H. Tang, L. Qiao, M. Wang, Synthesis and application of titania-coated ultrafine diamond abrasive particles, Ceram. Int. 42 (2016) 8884–8890.
[10] P. Khalilnezhad, S.A. Sajjadi, S.M. Zebarjad, Effect of nanodiamond surface functionalization using oleylamine on the scratch behavior of polyacrylic/nanodiamond nanocomposite, Diam. Relat. Mater. 45 (2014) 7–11.
[11] K.-D. Kim, N.K. Dey, H.O. Seo, Y.D. Kim, D.C. Lim, M. Lee, Photocatalytic decomposition of toluene by nanodiamond-supported TiO2 prepared using atomic layer deposition, Appl. Catal. A 408 (2011) 148–155.
[12]X. Zhang, C. Fu, L. Feng, Y. Ji, L. Tao, Q. Huang, S. Li, Y. Wei, PEGylation and polyPEGylation of nanodiamond, Polymer 53 (2012) 3178–3184.
[13] Z.Y. Zhang, B. Wang, P. Zhou, D.M. Guo, R.K. Kang, B. Zhang, A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors, Sci. Rep. 6 (2016) 22466
[14] Z.Y. Zhang, S .Yang, D.M. Guo, B.Y. Yuan, X.G. Guo, B. Zhang, Y.X. Huo, Deformation twinning evolution from a single crystal in a face-centered-cubic ternary alloy, Sci. Rep. 5(2015) 11290
[15] W.J. Zong, T. Sun, D. Li, K. Cheng, and Y. C. Liang, XPS analysis of the groove wearing marks on flank face of diamond tool in nanometric cutting of silicon wafer, Int. J. Mach. Tools Manuf. 48 (2008) 1678–1687.
[16] H. Huang, B.L. Wang, Y. Wang, J. Zou, L. Zhou, Characteristics of silicon substrates fabricated using nanogrinding and chemo-mechanical-grinding, Mater. Sci. Eng. A 479 (2008) 373–379.
[17] Z.C. Li, Z.J. Pei, G.R. Fisher, Simultaneous double side grinding of silicon wafers: a literature review, Int. J. Mach. Tool Manuf. 46 (2006) 1449–1458.
[18] I. Zarudi, L.C. Zhang, Effect of ultraprecision grinding on the microstructural change in silicon monocrystals, J. Mater. Process. Technol. 84 (1998) 149–158.
[19] Y. Wang, J. Zou, H. Huang, L. Zhou, B.L. Wang, Y.Q. Wu, Formation mechanism of nanocrystalline high-pressure phases in silicon during nanogrinding, Nanotechnology 18 (2007) 465705.
[20] H.T. Young, H.T. Liao, H.Y. Huang, Surface integrity of silicon wafers in ultra precision machining, Int. J. Adv. Manuf. Technol. 29 (2006) 372–378.
[21] S.Y. Luo, K. C. Chen, An experimental study of flat fixed abrasive grinding of silicon wafers using resin-bonded diamond pellets, J. Mater. Process. Mach. Tools Manuf. 51 (2011)18–24
[22] I. Zarudi, J. Zou, LC. Zhang, Microstructures of phases in indented silicon: a high resolution characterization, Appl. Phys. Lett. 82 (2003)874–876
[23] S. Wong, B. Haberl, J.S. Williams, J.E. Bradby, Phase transformation as the single-mode mechanical deformation of silicon, Appl. Phys. Lett. 106 (2015) 252103
[24] M. Takagi, K. Onodera, A. Matsumuro, H. Iwata, K. Sasaki, H. Saka TEM and HRTEM observations of microstructural change of silicon single crystal scratched under very small loading forces by AFM, Mater. Trans. 49 (2008) 1298–1302
[25] R. Gassilloud, C. Ballif, P. Gasser, G. Buerki, J. Michler, Deformation mechanisms of silicon during nanoscratching, Phys. Status Solidi A Appl. Mater. Sci. 202 (2005) 2858–2869
[26] Y.Q. Wu, H. Huang, J. Zou, L.C. Zhang, J.M. Dell ,Nanoscratchinduced phase transformation of monocrystalline, Si. Scr. Mater. 63 (2010) 847–850
[27] Z.J. Pei, Alan Strasbaugh, Fine grinding of silicon wafers, Int. J. Mach. Tools Manuf. 41 (2001) 659–67251
[28] B. Wang, Z. Zhang, K. Chang, J. Cui, A. Rosenkranz, J. Yu, C. T. Lin, G. Chen, K. Zang , J. Luo, N. Jiang, D. Guo , New Deformation-Induced Nanostructure in Silicon, Nano Lett. 18 (2018) 4611-4617
[29] Z. Zhang, X. Wang, F. Meng, D. Liu, S. Huang, J. Cui, J. Wang, W. Wen, Origin and evolution of a crack in silicon induced by a single grain grinding, J. Manuf. Process. 75 (2022) 617-626
[30] Z. Zhang, F. Huo, X. Zhang, D. Guo, Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits, Scr. Mater. 67(7-8), (2012) 657-660
[31] Z. Zhang, Y. Song, C. Xu, D. Guo, A novel model for undeformed nanometer chips of soft-brittle HgCdTe films induced by ultrafine diamond grits, Scr. Mater. 67(2), (2012) 197-200
[32] Z.Y. Zhang, Y.X. Huo, D.M. Guo, A model for nanogrinding based on direct evidence of ground chips of silicon wafers, Sci. China Technol. Sci. 56(9) (2013) 2099-2108
[33] Z.Y. Zhang, J. Cui,B. Wang, Z. Wang, R. Kang, D. Guo, A novel approach of mechanical chemical grinding, J. Alloys Compd. 726 (2017) 514-524
[34] B. Zhao, W. Ding, Z. Chen, C. Yang, Pore structure design and grinding performance of porous metal-bonded CBN abrasive wheels fabricated by vacuum sintering, J. Manuf. Process. 44 (2019) 125–132.
[35] T. Tanaka, S. Esaki, K. Nishida, T. Nakajima, K. Ueno, Development and application of porous vitrified-bonded wheel with ultra-fine diamond abrasives, Key Eng. Mater. 257–258 (2004) 251–256.
[36] H. Zhou, M. Guo, X. Wang, Ultraprecision grinding of silicon wafers using a newly developed diamond wheel, Mater. Sci. Semicond. Process. 68 (2017) 238–244.
[37] D. Zhao, Z. Wang, Y. Xi, Q. Zou, X. Li, B. Wang, X. Guo, M. Liang, W. Li, M. Wang, Y.C. Zhao, Preparation of silica-coated ultrafine diamond and dispersion in ceramicmatrix, Mater. Lett. 113 (2013) 134–137.
[38] J. Lu, Y. Xu, Y. Zhang, X. Xu, The effects of SiO 2 coating on diamond abrasives in sol-gel tool for 碳化矽 substrate polishing, Diam. Relat. Mater. 76 (2017) 123–131.
[39]V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds, Nat. Nanotechnol. 7 (2012) 11–23.
[40] B. Zhao, A.K. Gain, W. Ding, L. Zhang, X. Li, Y. Fu, A review on metallic porous materials: pore formation, mechanical properties, and their applications, Int. J. Adv. Manuf. Technol. 95 (2017) 2641–2659.
[41] Z. Yang, M. Zhang, Z. Zhang, A. Liu, R. Yang, S. Liu, A study on diamond grinding wheels with regular grain distribution using additive manufacturing (AM) technology, Mater. Des. 104 (2016) 292–297.
[42] K. Li, Q. Guo, M. Liu, Y. Zhao, D. Shi, A study on pore-forming agent in the resin bond diamond wheel used for silicon wafer back-grinding, Procedia. Eng. 36 (2012) 322–328.
[43] M. Leśniak, M. Gajek, J. Partyka, M. Sitarz, Thermal characterisation of raw aluminosilicate glazes in SiO2–Al2O3–CaO–K2O–Na2O–ZnO system with variable content of ZnO, J. Therm. Anal. Calorim. 128 (2017) 1343–51.
[44] W.F. Ding, J.H. Xu, Z.Z. Chen, C.Y. Yang, C.J. Song, Y.C. Fu,Fabrication and performance of porous metal-bonded CBN grinding wheels using alumina bubble particles as pore-forming agents, Int. J. Adv. Manuf. Technol. 67 (2013)1309–1315
[45] Z.Y. Zhang, F.W. Huo, Y.Q. Wu, H. Huang, Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material, Int. J. Mach. Tools Manuf. 51 (2011)18–24
[46] Z.Y. Zhang, B. Wang, R.K. Kang, B. Zhang, D.M. Guo, Changes in surface layer of silicon wafers from diamond scratching, CIRP Ann. Manuf. Technol. 64 (2015) 349–352
[47] Z.Y. Zhang, D.M. Guo, B. Wang, R.K. Kang, B. Zhang, A novel approach of high speed scratching on silicon wafers at nanoscale depths of cut, Sci. Rep. 5 (2015) 16395
[48] Z.Y. Zhang, S.L. Huang, S.C. Wang, B. Wang, Q. Bai, B. Zhang, R.K. Kang, D.M. Guo, A novel approach of high-performance grinding using developed diamond wheels, Int. J. Adv. Manuf. Technol. 91 (2017)3315–3326.
[49] W. Miao, Y. Ding, Y. Zhao, H. Bao, N. Yana, W. Yang , Z. Hui , B. Liu, Modified gel casting technique to fabricate honeycomb structured vitrified bonded ultrafine diamond grinding wheels, Ceram. Int. 46 (2020) 4462-4469.
[50] L. Zhou1, Y.B. Tian, H. Huang, H. Sato, J. Shimizu, A study on the diamond grinding of ultra-thin silicon wafers, Proc. IMechE Part B: J. Eng. Manuf. 226 (2011) 66–75. 
指導教授 傅尹坤(Yiin-kuen Fuh) 審核日期 2022-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明