博碩士論文 109353018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.118.193.232
姓名 林昶志(CHANG-CHIH LIN)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 自動化鞋型切削機之設計與實現
(Design and Realization of Automatic Shoes processing Machine)
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以機器學習導入電梯生產結果預測之研究
★ 新環保冷媒R454取代R410A冷媒迴轉式單缸壓縮機效能分析與可靠性驗證★ 高速銑削Al7475-T7351的銑削參數與基因演算法研究
★ 以FPGA為基礎之精密位置控制IC★ CNC三維圓弧插補器
★ PID與模糊控制在營建工程自動化的探討★ 高速射出成型機自我調整控制器之設計與實現
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來由於COVID-19因素導致全球供應鏈交期混亂以致於全球傳統生產行業在人力不足的狀況下加速將製程自動化以減少人力,此情況尤以3D(Dirty, Dangerous, Difficult ) 製程段中有最為迫切需求,本論文的目的針對製鞋製程中的鞋底斜面研磨段進行研究並開發其自動化生產設備,一共分成實驗設備硬體&軟體建立,主要是透過Soidworks和AutoCAD建立硬體設備的3D立體圖和電控圖並以C#建立搭配此硬體的路徑生程軟體,最後以此設備實際執行生成之路徑進行鞋底斜面研磨段製程,而實驗結果證實了此設計搭配的可行性和精度範圍,也拓展了以其為基礎拓展後需整線無人化的可行性。
摘要(英) Global supply chain has been chaotic due to the Covid-19 in these days. Global traditional industries decide to make the process automatic rapidly in order to reduce manpower, and it’s all because of human resource shortage. The 3D Process has the most urgent need. The purpose of this thesis is aimed at researching the cutting shoes of personalized shoes and developing automation equipment. There is creation of experimental equipment hardware and software, which constructed the stereogram and electrical diagram of hardware equipment through Soidworks and AutoCAD, as well as set up the path planning software of this hardware by C#. At last, it conducts shoes processing with the productive route executed by the equipment. The results of experiments prove the feasibility and the range of precision with the design matched. This also expands the feasibility of automatic factory with the basements expansion.
關鍵字(中) ★ 電腦數值控制
★ 客製化鞋型
★ 自動化
關鍵字(英) ★ CNC tools
★ footwear
★ automation equipment
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1研究背景與動機 1
1.2 文獻回顧 3
1.3 章節摘要 4
第二章 研究內容與方法 5
2.1 加減速控制的裝置與方法[6] 5
2.2 加減速的規劃 6
2.2.1 梯形加減速 9
2.2.2 S型加減速[9][10] 10
2.3 S三項(PID)控制器[11] 15
2.3.1 比例控制(PROPORTIONAL CONTROL) 16
2.3.2 積分控制(INTEGRAL CONTROL) 16
2.3.3 微分控制(DERIVATIVE CONTROL) 18
2.4 交流伺服馬達(AC SERVO MOTORS)[12] 19
2.4.1 變頻器(FREQUENCY CONVERTER) 21
2.5 電動主軸(MOTORIZED SPINDLE) 22
第三章 實驗設備建立 25
3.1 機構規劃佈局 25
3.2 XY軸滑台機構 27
3.3 C軸旋轉軸機構 33
3.4 B軸旋轉軸機構 36
3.5 控制系統組成 39
3.6 路徑生成軟體 46
第四章 實驗結果 59
4.1 路徑切削結果檢驗 59
4.2 斜面角度切削結果檢驗 65
第五章 結論與未來展望 67
5.1 結論 67
5.2 未來與展望 67
參考文獻 69
參考文獻 [1] Fishel, J. A., Oliver, T., Eichermueller, M., Barbieri, G., Fowler, E., Hartikainen, T., ... & Walker, R. (2020, May). Tactile telerobots for dull, dirty, dangerous, and inaccessible tasks. In 2020 IEEE International conference on robotics and automation (ICRA) (pp. 11305-11310). IEEE. [2] Raffaeli, R., & Germani, M. (2011). Advanced computer aided technologies for design automation in footwear industry. International Journal on Interactive Design and Manufacturing (IJIDeM), 5(3), 137-149. [3] Raffaeli, R., Alfaro, D., Germani, M., Mandorli, F., & Montiel, E. (2006). Innovative design automation technologies for corrective shoes development. In DS 36: Proceedings DESIGN 2006, the 9th International Design Conference, Dubrovnik, Croatia.
[4] Carpanzano, E., & Jovane, F. (2007). Advanced automation solutions for future adaptive factories. CIRP annals, 56(1), 435-438.
[5] Mazzolini, M., Brusaferri, A., & Carpanzano, E. (2010, September). Model-checking based verification approach for advanced industrial automation solutions. In 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010) (pp. 1-8). IEEE.
[6] 王文志,“NURBS插補器在DSP-BASED CNC之設計與實現”,p12-14, 國立中央大學碩士論文, 2003.
[7] Li, H., Li, H., Song, L., Yin, Y., Huang, L., & Li, W. (2010, August). Design of global sliding-mode controlled AC servo controller based on exponential acceleration/deceleration algorithm. In 2010 IEEE International Conference on Mechatronics and Automation (pp. 1507-1511). IEEE.
[8] Chen, Y., Ji, X., Tao, Y., & Wei, H. (2013). Look-ahead algorithm with whole S-curve acceleration and deceleration. Advances in Mechanical Engineering, 5, 974152.
[9] Zheng, K., & Cheng, L. (2008, June). Adaptive s-curve acceleration/deceleration control method. In 2008 7th World Congress on Intelligent Control and Automation (pp. 2752-2756). IEEE.
[10] Li, Z., Cai, L., & Liu, Z. (2020). Efficient Planning and Solving Algorithm of-Shape Acceleration and Deceleration. Wireless Communications and Mobile Computing, 2020.
[11] M. Johnson, J. Croweand and M. H. Moradi, PID Control: New Identification and Design Methods, U.K., London:Springer, 2005.
[12] Firoozian, R. (2014). Feedback Control Theory Continued. In Servo Motors and Industrial Control Theory (pp. 17-48). Springer, Cham.
[13] Abele, E., Altintas, Y., & Brecher, C. (2010). Machine tool spindle units. CIRP annals, 59(2), 781-802.
[14] Tatar, A., & Schwingshackl, C. W. (2018, June). Effect of a Planetary Gearbox on the Dynamics of a Rotor System. In Turbo Expo: Power for Land, Sea, and Air (Vol. 51135, p. V07AT33A013). American Society of Mechanical Engineers.
[15] Wang, F., Lin, H., Zheng, L., Yang, L., Feng, J., & Zhang, H. (2014). Design and implementation of five-axis transformation function in CNC system. Chinese journal of aeronautics, 27(2), 425-437.
[16] Davim, J. P. (Ed.). (2015). Modern manufacturing engineering. Cham: Springer International Publishing.
[17] Alliance, O. D. (1998). Open Design Specification for. dwg files Version 5.2.
[18] Autodesk, A. (2009). DXF Reference. Autodesk, Jan.
[19] Ali, A. W. A., Razak, F. A. A., & Hayima, N. (2020). A review on the AC servo motor control systems. ELEKTRIKA-Journal of Electrical Engineering, 19(2), 22-39.
指導教授 董必正(Pi-Cheng Tung) 審核日期 2022-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明