博碩士論文 109521133 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.222.115.179
姓名 鄭凱璘(Zheng KaiL Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於類表面電漿之機械可調導波結構於高頻地波雷達之應用
(A Mechanically Tunable Guided-Wave Structure Based on Spoof Surface Plasmons for High-Frequency Ground Wave Radar Applications)
相關論文
★ 基於慢波結構之槽孔天線微型化★ 應用於毫米波封裝之鎊線分析與設計
★ 應用於毫米波封裝之覆晶連結分析與設計★ 用於第五代行動通訊之類表面電漿微型圓極化槽孔天線
★ 一種用於陣列天線場型合成之混合最佳化方法★ 以超表面實現可展開網狀反射面天線之增益改 進
★ 一種基於類表面電漿之高頻地波雷達部署方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-23以後開放)
摘要(中) 地波雷達的在實際應用上,由於部署的位置大部分在沿海,造成在激發地波前電磁波會經過一個過渡的地帶,例如沙灘、沙地等,激發與地波模態不匹配的介質平板波導模態,進而產生洩漏天波,針對這樣的議題本論文設計了伸縮週期性結構,伸縮週期性結構由金屬條陣列與基板所組成,透過人工調整金屬條之間的間距,使伸縮週期性結構所支撐的類表面電漿模態電場分布與地波相似,將其放置於地波雷達天線與海水之間可以作為一模態過渡的結構,在不同頻段產生與地波匹配的電場分布,幫助地波雷達天線輻射能量耦合成地波進而提高激發地波的效率,一方面可以解決模態不匹配的議題,另一方面由於能量守恆定理,地波雷達天線激發天波的比例就會減少,天波干擾的情況也會減少。
本論文第二章解釋如何讓伸縮週期性結構達到人工可調的目的,並透過本徵模(Eigenmode)分析驗證吾人的伸縮週期性結構可以支撐類表面電漿模態,並且在金屬條間距不同時,會有不同的類表面電漿模態的色散關係,因此在同樣的頻率下可以有不同的電場分布。
本論文第三章在微波頻段透過量測結果驗證,伸縮週期性結構藉由人工改變金屬條的間距,確實可以在量測的頻段(0.7GHz-3GHz)中達到地波增強的效果,並且具有85%的相對頻寬,可以實際應用於地波雷達中。
摘要(英) A ground wave radar is most commonly deployed along coastal areas. This causes the electromagnetic wave to pass through a transition zone, such as sandy beach, before the excitation of the ground wave. In this case, a dielectric slab waveguide mode that does not match the ground wave mode will be excited. Therefore leakage sky waves are then generated. As mentioned above, tunable guided-wave structure is designed in this paper , A tunable guided-wave structure consists of a metal strip array and a substrate. By manually adjusting the spacing between metal strip, the Spoof Surface Plasmon mode field distribution supported by the tunable guided-wave structure is similar to that of ground waves. It is possible to transition from one mode to another between the antenna and the seawater by using tunable guided-wave structures Match the field distribution of ground waves in different frequency bands in order to enhance the efficiency of ground wave excitation by coupling the radiant energy of the ground wave radar antennas into the ground waves. On the one hand, it can solve the problem of mode mismatch, and on the other hand, due to the law of conservation of energy, the proportion of sky wave excitation by ground wave radar antenna will be reduced, and the sky wave interference will be reduced.

Chapter 2 explains how to make the tunable guided-wave structure manually tunable. The eigenmode analysis verifies that our tunable guided-wave structure can support Spoof Surface Plasmon modes. When the spacing between metal strips is different, there will be different dispersion relations of Spoof Surface Plasmon modes, so there can be different electric field distribution at the same frequency.
Chapter 3 of verifies the results of the transmission measurements in the microwave band. The tunable guided-wave structure can really achieve the effect of ground wave enhancement in the measured frequency band (0.7GHz-3GHz) by manually changing the spacing of the metal bars and has 85% relative bandwidth. it can actually be used for ground wave radar.
關鍵字(中) ★ 地波雷達
★ 類表面電漿模態
關鍵字(英) ★ Ground Wave
★ Spoof Surface Plasmon
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xiii
第一章 導論 1
1-1 研究動機 1
1-2 超視距地波雷達 2
1-3 地波雷達議題 5
1-4 章節架構 9
第二章 類表面電漿模態理論與驗證 10
2-1 類表面電漿模態介紹 10
2-2 設計伸縮週期性結構構思 14
2-3 設計伸縮週期性結構 16
第三章 量測以及實驗結果 25
3-1 無使用週期性結構量測結果 25
3-2 使用鋁製伸縮週期性結構量測結果 35
3-3 使用銅箔膠帶貼製的週期性結構的量測結果 74
第四章 結論與未來工作 106
參考文獻 107
附錄一、ETS3115(MODEL 3115 DOUBLE-RIDGED GUIDE ANTENNA) 110
附錄二、ANRITSU TIME GATING 步驟 112
附錄三、背墊導體介質平板波導上放鋁板與金屬伸縮週期性結構比較 114
附錄四、金屬伸縮週期性結構產生帶隙(BANDGAP) 124
附錄五、探討金屬週期性結構的邊界效應 136
參考文獻 [1] G. Viswanathan, R. C. Bhatia, V. P. Kamble, and S. R. Rao, "Indian Doppler weather radar system-an overview," in IGARSS′97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development, 3-8 Aug. 1997.
[2] F. Liang, M. Liu, H. Li, F. Qi, Z. Li, and J. Wang, "Through-the-wall imagery of human vital signs using UWB MIMO bioradar," in 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 15-17 Dec. 2017.
[3] M. Yu, M. Meyer, M. Byrne, and H. Winston, "Advanced techniques for automatic surface search radar correlation and tracking," in Proceedings International Radar Conference, 8-11 May 1995.
[4] R. Khan et al., "Target detection and tracking with a high frequency ground wave radar," IEEE Journal of Oceanic Engineering, vol. 19, no. 4, pp. 540-548, 1994.
[5] A. Dzvonkovskaya, L. Petersen, and T. Helzel, "HF Ocean Radar with a Triangle Waveform Implementation," in 2018 19th International Radar Symposium (IRS), 20-22 June 2018.
[6] C. Zhao, Z. Chen, C. He, F. Xie, and X. Chen, "Wind direction measurements using HF ground wave radars based on a circular receive array," in 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), 19-22 Nov. 2017.
[7] A. Dzvonkovskaya, L. Petersen, and T. L. Insua, "Real-time capability of meteotsunami detection by WERA ocean radar system," in 2017 18th International Radar Symposium (IRS), 28-30 June 2017.
[8] A. D. I. K.-W. Gurgel and T. Schlick, "HF Radar WERA Application for Ship Detection and Tracking 1," 2010.
[9] M. Menelle, G. Auffray, and F. Jangal, "Full digital High Frequency Surface Wave Radar: French trials in the biscay bay," in 2008 International Conference on Radar, 2-5 Sept. 2008.
[10] C. Zhao, Z. Chen, C. He, F. Xie, and X. Chen, "Wind direction measurements using HF ground wave radars based on a circular receive array," in 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), 19-22 Nov. 2017.
[11] C. Wang et al., "Validation and Intercomparison of Sea State Parameter Estimation With Multisensors for OSMAR-S High-Frequency Radar," IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 10, pp. 7552-7565, 2020.
[12] S. J. Anderson, P. J. Edwards, P. Marrone, and Y. I. Abramovich, "Investigations with SECAR - a bistatic HF surface wave radar," in 2003 Proceedings of the International Conference on Radar (IEEE Cat. No.03EX695), 3-5 Sept. 2003.
[13] L. Y. O. Yang and S. Y. Chen, "Signal-to-noise ratio enhancement of high frequency ground wave radar based on a metamaterial-based transition structure," in 12th European Conference on Antennas and Propagation (EuCAP 2018), 9-13 April 2018.
[14] D. M. Pozar, Microwave Engineering, 4th Edition: Wiley, 2011.
[15] Wen Xuan Tang,Hao Chi Zhang,Hui Feng Ma,Wei Xiang Jiang,Tie Jun Cui,"Concept, Theory, Design, and Applications of Spoof Surface Plasmon Polaritons at Microwave Frequencies," 28 August 2018
[16] 邱國斌,蔡定平,「金屬表面電漿簡介」,物理雙月刊,廿八卷,二期,476-480頁,2006 年 4 月。
[17] Y. Yang, X. Shen, P. Zhao, H. C. Zhang, and T. J. Cui, "Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies," Opt. Express, vol. 23, no. 6, pp. 7031-7037, 2015/03/23.
[18] J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science, vol. 305, no. 5685, pp. 847-848, 2004/08/06.
[19] A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental Verification of Designer Surface Plasmons," Science, vol. 308, no. 5722, pp. 670-672, 2005/04/29.
[20] F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," Journal of Optics A: Pure and Applied Optics, vol. 7, no. 2, pp. S97-S101, 2005/01/21.
[21] 龔建強,褚慶昕,「Ansoft HFSS 在周期性异向介质研究中的仿真方法」,Ansoft 2008 優秀論文,4-6頁,200.
[22] J. Hendrickx, B. Das, and B. Borchers, "Modeling Distributions Of Water And Dielectric Constants Around Landmines In Homogeneous Soils," Proceedings of SPIE - The International Society for Optical Engineering, vol. 3710, 04/10 1999.
[23] G. Fischer, "Electromagnetic induction effects at an ocean coast," Proceedings of the IEEE, vol. 67, no. 7, pp. 1050-1060, 1979.
[24] M. F. Hawkins, Jr., "A Note on the Skin Effect," Journal of Petroleum Technology, vol. 8, no. 12, pp. 65-66, 1956.
[25] A. S. I. Amar, A. M. Eid, and A. A. Salama, "High Gain Low Cost Vivaldi Antenna Design Using Double Slits and Triangle Metallic Strip for WiFi Applications," in 2019 15th International Computer Engineering Conference (ICENCO), 29-30 Dec. 2019.
指導教授 歐陽良昱(Liang Yu Ou Yang) 審核日期 2022-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明