博碩士論文 109323065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.117.11.233
姓名 黃俊嘉(Chun-Chia Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 快速升溫速率退火對Ti65(AlNbCrV)28Zr7中熵合金微結構及其機械性質影響之研究
(Effect of rapid heating annealing on the microstructure and mechanical properties of Ti65(AlNbCrV)28Zr7 medium-entropy alloys)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究
★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究
★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究
★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-31以後開放)
摘要(中) 先前實驗室設計出密度接近5 g/cm3、降伏強度能達到1200 MPa以及塑性能維持15 %以上之Ti65(AlCrNbV)28Zr7中熵合金,本研究目的為利用不同滾軋製程與升溫速率將機械性質再一次提升。首先將選定之元素,用高溫電弧融煉技術鑄成具有簡單固溶相之六元Ti65(AlCrNbV)28Zr7中熵合金,並透過滾軋製程使其厚度降低累積應變能,再將其以短時間不同升溫速率之退火熱處理使材料晶粒細化,藉由分析微結構與機械性質探討其強化機制,找出最合適的加工製程與熱處理參數。
研究結果顯示,鑄造態的Ti65(AlCrNbV)28Zr7為單一BCC相,並能達到1000 MPa以上的降伏強度與20.0 %以上的拉伸塑性。將此系列合金以熱機處理強化,發現給予冷滾軋試片較大的加工量,在熱處理後能得到較佳的機械性質組合,另外若使用較快加溫速率的熱機處理,可以更進一步得到優秀的機械性質組合。此外在冷滾軋前合金材料可藉由熱滾軋製程提高整體之延展性。本實驗中,將材料以90%冷軋,以25°C/s退火熱處理能達到期望之機械性質,能達到預期的1220MPa與17.0%延性。
摘要(英) The developed light weight medium entropy alloy, Ti65(AlCrNbV)28Zr7 (Ti-65MEA), owns the ideal characteristic such as density is close to 5 g/cm3, yield strength of 1200 MPa and plastic strain maintained above 15%. The purpose of this study is to improve mechanical properties by various hot/cold rolling process couple with annealing heating rate. The as-cast samples are successfully cast into alloy ingots by vacuum metallurgy and rapidly solidification technology. The as-cast samples show the single BCC phases and the mechanical properties are 1015 MPa and 23% for yield strength and tensile ductility, respectively. The ingots then strengthened through the rolling process which can accumulate the strain energy by reducing the thickness of ingot. Secondly, through 15 and 25 ℃/sec annealing heating rate in a several certain time period to verify the change of the grain size.
According to the tensile test results, as-cast Ti65(AlCrNbV)28Zr7 remain single BCC phases. Also, it can achieve yield strength above 1000 MPa and tensile ductility above 20.0%. In addition, the alloys were applied a larger amount of processing to the cold-rolled test pieces can possess mechanical properties after heat treatment, moreover, faster heating rate can also have better mechanical properties. Reducing the thickness of material by 90% by cold rolling and annealing in 25°C/s can achieve the goal. Due to the reducing of the recrystallization temperature, the closest processing parameters obtained in this experiment did not reach the goal by reducing the thickness by 50 % first by hot rolling, and then reduce the thickness by 80 % by cold rolling. So the best parameters of this material is reducing by 90% by cold rolling. After processing annealing, Ti65(AlCrNbV)28Zr7 can achieve the desired mechanical properties, which is tensile yield strength of 1220 MPa and plastic strain of 17.3 %.
關鍵字(中) ★ 輕量化中熵合金
★ 非等原子比
★ 熱機處理
關鍵字(英) ★ light-weight MEAs
★ non-equiatomic
★ thermomechanical treatment
論文目次 摘要 I
Abstract II
致謝 IV
總目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1-1 前言 1
1-2研究目的 1
第二章 文獻回顧 3
2-1高熵合金之發展與定義 3
2-2高熵合金之固溶體形成條件 3
2-3高熵合金四大效應 5
2-3-1高熵效應 5
2-3-2嚴重晶格扭曲 6
2-3-3 雞尾酒效應 6
2-3-4延遲擴散效應 7
2-4高熵合金成分設計 7
2-4-1低密度高熵合金 7
2-4-2 非等比例高熵合金 8
2-5機械行為之影響因素 8
2-5-1固溶強化 9
2-5-2熱機處理 9
2-5-3 異構組織強化 10
第三章 實驗步驟及方法 19
3-1 元素選擇與設計 19
3-2中熵合金的製備 19
3-2-1 合金成分的配製 19
3-2-2 合金熔煉 19
3-2-3中熵合金板材製作 20
3-2-4 均質化熱處理 20
3-2-5 熱滾軋 21
3-2-6 冷滾軋 21
3-3 再結晶退火熱處理 21
3-4 合金密度量測 22
3-5 微結構分析 22
3-5-1 X 光繞射分析儀(XRD) 22
3-5-2 光學顯微鏡(Optical Microscopy) 23
3-5-3 能量散射光譜儀(EDS) 23
3-5-4 電子背散射繞射分析儀(EBSD) 23
3-6熱示差掃描熱量分析(DSC) 23
3-7機械性質分析 24
3-7-1 維式硬度測試 24
3-7-2拉伸強度測試 24
第四章 實驗結果與分析 40
4-1合金成分選定 40
4-1-1合金選擇與固溶體之相關參數計算 40
4-1-2 成分分析 40
4-1-3 合金密度 40
4-2均質化熱處理 41
4-3 滾軋及再結晶退火熱處理 41
4-3-1 X-ray繞射分析 41
4-4滾軋及再結晶退火後的微觀組織分析 42
4-4-1 CR80微觀組織 42
4-4-2 CR90微觀組織 43
4-4-3 HRCR70微觀組織 43
4-4-4 HRCR80微觀組織 44
4-5 滾軋及再結晶退火後拉伸測試 45
4-5-1 CR80拉伸測試 45
4-5-2 CR90拉伸測試 46
4-5-3 HRCR70拉伸測試 47
4-5-4 HRCR80拉伸測試 47
4-6異質結構強化分析 48
4-7熱機處理之結構與機制分析 49
第五章 結論 88
第六章 參考資料 89
參考文獻 1. Handbook Committee, “Properties and selection : irons, steels, and high-performance alloys”, Vol.1, Materials Park, OH : ASM International, 1990.
2. Handbook Committee, “Properties and selection: nonferrous alloys and special-purpose materials”, Vol.2, Materials Park, OH : ASM International, 1990.
3. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, “Nanostructure high-entropy alloys with multiple principle elements: novel alloy design concepts and outcomes”, Advanced Engineering Materials, Vol.6, pp.299-303, 2004.
4. J. W. Yeh, “Recent progress in high-entropy alloys”, Annales De Chimie – Science des Materiaux, Vol.31, pp. 633-648, 2006.
5. M. H. Tsai and J. W. Yeh., “High-entropy alloys: a critical review”, Materials Research Letters” ,Vol. 2, pp.107–123, 2014.
6. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes”, Advanced Engineering Materials, 6(5), pp.299.303, 2004.
7. B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys”, Materials Science and Engineering: -A, 375-377, pp.213-218, 2004.
8. S. Ranganathan, “Alloyed pleasures: mutimetallic cocktails”. current science”, 85(10), pp.1404-1406, 2003.
9. 徐聖家,「熱機處理對TiAlNbCrVZr系高熵合金微結構和機械性質影響之研究」,國立中央大學,碩士論文 ,2021.
10. Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du & B. Li, “Design of non-equiatomic medium-entropy alloys”, Scientific Reports, Vol.8, Article 1236, 2018.

11. Z. Li, D. Raabe, “Strong and ductile non-equiatomic high-entropy alloys: design, processing, microstructure, and mechanical properties”, JOM, Vol.69, pp.2099–2106, 2017.
12. M. J. Yao, K. G. Pradeep, C. C. Tasan and D. Raabe, “A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility”, Scripta Materialia, Vol.72-73, pp.5-8, 2014.
13. X. K. Zhang, J. C. Huang, P. H. Lin, T. Y. Liu, Y. C. Wu, W. P. Li, Y. N. Wang, Y. C. Liao, Jason S. C. Jang, “Microstructure and mechanical properties of Tix(AlCrVNb)100-x light weight multi-principal element alloys”, Journal of Alloys and Compounds, Vol.831, pp.154742, 2020.
14. X. Yang, Y. Zhang, P. K. Liaw, “Microstructure and compressive properties of NbTiVTaAlx high entropy alloys”, Procedia Engineering, 36, pp.292-298, 2012.
15. O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, C. F. Woodward, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy”, Journal of Alloys and Compounds, 509(20), pp.6043-6048, 2011.
16. L. Lilensten, J. P. Couzinié, L. Perrière, J. Bourgon, N. Emery, I. Guillot, “New Structure in refractory high-entropy alloys”, Materials Letters, 132, pp.123-125, 2014.
17. O.N. Senkov, S.L. Semiatin, “Microstructure and properties of a refractory high-entropy alloy after cold working”, Journal of Alloys and Compounds, Vol.649, pp.1110-1123, 2015.
18. S. Zherebtsov, N. Yurchenko, E. Panina, M. Tikhonovsky, N. Stepanov, “Gum-like mechanical behavior of a partially ordered Al5Nb24Ti40V5Zr26 high-entropy alloy”, Intermetallics, Vol.116, pp.106652, 2020.
19. Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, C.T. Liu, T.G. “Nieh, An assessment On the future development of high-entropy alloys : summary from a recent workshop”, Intermetallics, Vol.66, pp.67-76, 2015.
20. J. Hou, M. Zhang, S. Ma, Peter. K. Liaw, Y. Zhang, J. Qiao, “Strengthening in Al0.25CoCrFeNi high-entropy Alloys by cold rolling”, Materials Science & Engineering A, Vol.707, pp.593-601, 2017.
21. R.R. Eleti, V. Raju, M. Veerasham, S.R. Reddy, P.P. Bhattacharjee “Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high-entropy alloy”, Materials Characterization, Vol.136, pp.286-292, 2018.
22. C. C. Juan, M. H. Tsai, C. W. Tsai, W. L. Hsu, C. M. Lin, S. K. Chen, S. J. Lin, J. W. Yeh, “Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining”, Materials Letters, Vol.184, pp.200-203, 2016.
23. Y. C. Huang, Y. C. Lai, Y. H. Lin, S. K. Wu, “A study on the severely cold-rolled and annealed quaternary equiatomic derivatives from quinary HfNbTaTiZr refractory high-entropy alloy”, Journal of Alloys and Compounds, Vol.855, pp.157404, 2021.
24. S. Chen, K. K. Tseng, Y. Tong, W. Li, C. W. Tsai, J. W. Yeh, Peter K. Liaw, “Grain growth and Hall-Patch relationship in a refractory HfNbTaZrTi high-entropy alloy”, Journal of Alloys and Compounds, Vol.795, pp.19-26, 2019.
25. Yen, J. (2006). “Recent progress in high-entropy alloys.” Annales de Chimie Science des Matériaux, 31(6), pp.633-648
26. A. R. Miedema, P. F. de Châtel and F. R. de Boer. “cohesion in alloys - fundamentals of a semi-empirical model”, Physica B+C, Vol.100, pp.1-28, 1980.
27. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen and P. K. Liaw. “solid-solution phase formation rules for multi-component alloys”, Advanced Engineering Materials, Vol.10, pp.534-538, 2008.
28. X. Yang and Y. Zhang. “Prediction of high-entropy stabilized solid-solution in multi-component alloys”, Materials Chemistry and Physics, Vol. 132, pp.233-238, 2012.
29. S. GUO, C. T. LIU, “Phase stability in high-entropy alloys: formation of solid-solution phase or amorphous phase”, Progress in Natural Science: Materials International, Vol.21, pp.433-446, 2011.
30. D. Gaskell, “Introduction to the thermodynamics of materials”, 3rd ed, Washington: Taylor & Francis, pp. 80-84, 1995.
31. R. Swalin, “Thermodynamics of solids”, 2nd ed, New York: Wiley, pp.35-41, 1972.
32. J. W. Yeh,“高熵合金的發展”, 華岡工程學報, Vol.27, pp.1-18, 2011.
33. Carlyn R. LaRosa, Mulaine Shiha, Céline Varvenne, Maryam Ghazisaeidi, “Solid solution strengthening theories of high-entropy alloys”, Materials Characterization, Vol.151, pp.310-317, 2019.
34. F. Müller, B. Gorr, H. J. Christ, J. Müller, B. Butz, H. Chen, A. Kauffmann, M. Heilmaier, “On the oxidation mechanism of refractory high-entropy alloys”, Corrosion Science, Vol.159, pp.108161, 2019.
35. Y. Zhao, M. Wang, H. Cui, Y. Zhao, X. Song, Y. Zeng, X. Gao, F. Lu, C. Wang, Q. Song, “Effects of Ti-to-Al ratios on the phases, microstructures, mechanical properties, and corrosion resistance of Al2-xCoCrFeNiTix high-entropy alloys”, Journal of Alloys and Compounds, Vol.805, pp.585-596, 2019.
36. J.M.Wu, S.J.Lin, J.W.Yeh, S.K.Chen, Y, S.Huang, H.C.Chen,” Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content”, Wear, Vol. 261, pp. 513-519, 2006.
37. J. Zhang, X. Li, Y. Zhang, F. Zhang, H. Wu, X.Z. Wang, Q. Zhou, H. Wang, “Sluggish dendrite growth in an undercooled high entropy alloy”, Intermetallic, Vol.119, pp.106714, 2020.
38. R. Wang, Y. Tang, S. Li, Y. Ai, Y. Li, B. Xiao, L. Zhu, X. Liu, S. Bai “Effect of lattice distortion on the diffusion behavior of high-entropy alloys”, Journal of Alloys and Compounds, Vol.825, pp.154099, 2020.
39. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. “Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys”, Intermetallics, Vol.19, pp.698-706, 2011.
40. O. N. Senkov, S. V. Senkova, D. M. Dimiduk, C. Woodward, D. B. Miracle, “Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy”, Journal of Materials Science, Vol.47, pp.6522–6534, 2012.
41. O. N. Senkov, S. V. Senkov, D. B. Miracle, C. Woodward, “Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system”, Materials Science and Engineering: A, Vol.565, pp.51-62, 2013.
42. N. D. Stepanov, N. Yu. Yurchenko, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky. “Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys”, Materials Science and Technology, Vol.31, pp.1184-1193, 2015.
43. W. Chen, Q. H. Tang, H. Wang, Y. C. Xie, X. H. Yan, P. Q. Dai, “Microstructure and mechanical properties of a novel refractory AlNbTiZr high-entropy alloy”, Materials Science and Technology, Vol.34, Issue 11, pp1309-1315, 2018.
44. C. C. Tasan, Y. Deng, K. G. Pradeep, M. J. Yao, H. Springer, D. Raabe, “Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System”, JOM, Vol.66, pp.1993-2001, 2014.
45. P. Sathiyamoorthi, H. S. Kim, “High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties”, Progress in Materials Science, Vol 123, pp.100709-, 2022.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2022-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明