博碩士論文 109323004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.141.35.116
姓名 陳又維(Yu-Wei Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 不同鍛造製程對AA7005 鋁合金 微結構、織構與機械性質的影響
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-4以後開放)
摘要(中) 本研究使用F 狀態之AA7005 鋁合金熱擠型圓棒作為原料,並先後將其進行 去應力退火、鍛造以及T6 處理,其中鍛造的參數會以變形溫度與壓縮率區分成 四種鍛造模式,並以垂直於擠型的方向進行壓縮;測試機械性質所使用的拉伸試 棒是依照ASTM-E8 之規範進行製作,而測試的方向則是平行於初始擠型件的擠 型方向,最後透過織構、晶界等微結構性質來探究機械性質差異的原因。 本研究將擠型方向定義為Y 軸,鍛壓方向定義為Z 軸,而主要的分析平面為 Y-Z 平面,此外,本研究採用階段性的分析,整個鍛後熱處理流程分成鍛造前、 鍛造後以及熱處理後三個階段,以了解微結構差異之成因;本研究使用光學顯微 鏡(OM)、背向電子繞射儀(EBSD)進行分析,並取得晶粒形狀、晶界角度比例、 晶界總長度以及織構狀態的結果。 分析結果表示擠型過程會依照不同的力學狀態將材料由表層至中心區分成三 個部分,即粗晶層、過渡層以及纖維狀晶層,熱鍛之鍛件會導致過渡層轉變為粗 晶,而纖維狀晶層則是發生部分再結晶,並保留了擠型過程中所形成的帶狀結 構,冷鍛之鍛件則會發生完全再結晶的現象。 拉伸試棒所測試的區域對應纖維狀晶層的結構狀態,而在不同鍛造製程之條 件下,四組鍛件的機械性質皆符合規範之要求(YS≧290 MPa、UTS≧350 MPa、 TEL≧13%),其中各鍛件所存在的機械性質差異分別與不同微結構指標有關,YS 值與Y 軸方向的織構有關,<111>織構佔比與YS 值呈正相關,UTS 與Y-Z 平面 上的晶界總長度呈正相關,TEL 與X-Z 平面上晶粒的縱橫比呈負相關。
摘要(英) In this study, the AA7005 aluminum alloy hot-extruded round bar in F state was used as the raw material, and it was subjected to stress relief annealing, forging and T6 treatment successively. Compression is carried out in the direction perpendicular to the extrusion; the tensile test bar used for testing mechanical properties is made in accordance with the specifications of ASTM-E8, and the direction of the test is parallel to the extrusion direction of the initial extrusion, and finally through the weaving. microstructural properties such as structure and grain boundaries to explore the reasons for the differences in mechanical properties. In this study, the extrusion direction is defined as the Y axis, the forging direction is defined as the Z axis, and the main analysis plane is the Y-Z plane. In addition, this study adopts a staged analysis, and the whole post-forging heat treatment process is divided into pre-forging, post-forging and heat treatment. The latter three stages are used to understand the causes of microstructural differences; this study uses optical microscopy (OM), electron back scatter diffraction (EBSD) for analysis, and obtains grain shape, grain boundary angle ratio, grain boundary total length and The result of the texture state. The analysis results show that the extrusion process will divide the material into three parts from the surface layer to the center according to different mechanical states, namely the coarse grain layer, the transition layer and the fibrous grain layer. The fibrous crystal layer is partially recrystallized and retains the band-like structure formed during the extrusion process, while the cold-forged forgings will be completely recrystallized. V The area tested by the tensile test bar corresponds to the structural state of the fibrous crystal layer, and under different forging process conditions, the mechanical properties of the four groups of forgings all meet the requirements of the specification (YS≧290 MPa, UTS≧350 MPa, TEL≧ 13%), in which the difference in mechanical properties of each forging is related to different microstructure indicators, the YS value is related to the texture in the Y-axis direction, the <111> texture proportion is positively related to the YS value, and the UTS and Y-Z planes are related to The total grain boundary length is positively correlated with the TEL, and the TEL is negatively correlated with the aspect ratio of the grains in the X-Z plane.
關鍵字(中) ★ 鋁合金
★ 擠型
★ 鍛造
★ 微結構
★ 織構
★ 晶界
★ 機械性質
關鍵字(英) ★ Aluminum alloy
★ Extrusion
★ Forging
★ Microstructure
★ Texture
★ Grain Boundary
★ Mechanical Properties
論文目次 致謝 II
摘要 III
Abstact IV
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 前言 1
第二章 文獻回顧 2
2-1 Al-Zn-Mg 合金簡介 2
2-1-1 添加Mg、Zn對鋁合金機械性質的影響 4
2-1-2 析出強化機制 5
2-2 晶界(Grain Boundary, GB)簡介 10
2-2-1 差排邊界(Dislocation boundary) 12
2-2-2 差排邊界在熱環境下的行為 14
2-3 變形織構(Texture)簡介 17
2-3-1 織構的表示方式 18
2-3-2 鋁的變形織構種類 20
2-3-3 鋁合金變形織構與差排邊界的關係 26
2-3-4 鋁的織構強化 30
2-4 回復(Recovery)及再結晶(Recrystallization) 33
2-4-1 靜態回復 (Static Recovery) 33
2-4-2 靜態再結晶(Static Recrystallization) 35
2-4-3 動態回復(Dynamic Recovery, DRV) 36
2-4-4 動態再結晶(Dynamic Recrystallization, DRX) 36
2-5 熱擠型鋁件的微結構解析 39
2-5-1 擠型工藝簡介 39
2-5-2 鋁擠型件的微結構 40
2-5-3 外圍粗晶(Peripheral Coarse Grain, PCG) 43
第三章 實驗方法與步驟 46
3-1 實驗材料 46
3-2 實驗與分析流程 47
3-2-1 去應力退火 48
3-2-2 鍛造條件 48
3-2-3 鍛件熱處理 52
3-2-4 分析方法 53
3-3 實驗用設備與觀測儀器介紹 56
第四章 結果與討論 58
4-1 AA7005擠型F材之分析 58
4-1-1 金相分析 59
4-1-2 邊界角度分析 64
4-1-3 織構分析 68
4-2 冷鍛、常溫鍛鍛件之微結構分析 72
4-2-1 金相分析 72
4-2-2 邊界角度分析 78
4-2-3 織構分析 81
4-3 熱鍛鍛件之微結構分析 84
4-3-1 金相分析 84
4-3-2 邊界角度分析 89
4-3-3 織構分析 92
4-4 固溶處理對鍛件之微結構的影響 95
4-4-1 金相分析 95
4-4-2 邊界角度分析 99
4-4-3 織構分析 103
4-5 鍛件機械性質之綜合分析(UTS、YS、TEL、韌性) 106
第五章 結論 114
參考文獻 115
附錄 一 以Qfrom模擬AA7005熱擠型過程之應力狀態 126
附錄 二 內積之變體公式 130
附錄 三 專有名詞對照表 131
參考文獻 [1] P. Su, A. Gerlich, M. Yamamoto, T. H. North, “Formation and retention of local melted films in AZ91 friction stir spot welds”, Journal of Materials Science. Vol.42, pp.9954-9965, December 2007.
[2] K. Lu, “Stabilizing nanostructures in metals using grain and twin boundary architectures”, Nature Reviews Materials. Vol.1, pp.1-13, May 2016.
[3] F.H. Cao, J.X. Zheng, Y. Jiang, B. Chen, Y.R. Wang, T. Hu, “Experimental and DFT characterization of η′ nano-phase and its interfaces in Al-Zn-Mg-Cu alloys”, Acta Metall. Vol.164, pp.207-219, February 2019.
[4] D.M. Liu, B.Q. Xiong, F.G. Bian, Z.H. Li, X.W. Li, Y.G. Zhang, Q.S. Wang, G.L. Xie, F. Wang, H.W. Liu, “Quantitative study of nanoscale precipitates in Al-Zn-Mg-Cu alloys with different chemical compositions”, Materials Science and Engineering: A. Vol.639 , pp.245-251, July 2015.
[5] L. Agrawal, R. Yadav, A. Sexena, “Effect of Magnesium Content on the Mechanical Properties of Al-Zn-Mg Alloys”, International Journal on Emerging Technologies. Vol.1, pp.137-140, April 2012.
[6] M. C. Carroll and P. I. Gouma, “Effects of Zn additions on the grain boundary precipitation and corrosion of Al5083”, Scripta mater. Vol. 42, pp. 335-340, January 2000.
[7] J. Tang, J. Wang, J. Teng, G. Wang, D. Fu, H. Zhang, F. Jiang, “Effect of Zn content on the dynamic softening of Al–Zn–Mg–Cu alloys during hot compression deformation”, Vacuum. Vol.184, pp.1-10, February 2021.
[8] S. Jin, A. Wang, K. Wang, W. Li, B. Wan, T. Zhai, “Significant strengthening effect in ultra-fine grained Al alloy made by fast solidification and hot extrusion processes”, Journal of Materials Research and Technology. Vol.16, pp.1761-1769, February 2022.
[9] L. Chen, G. Zhao, J. Yu, W. Zhang, “Constitutive analysis of homogenized 7005 aluminum alloy at evaluated temperature for extrusion process”, Materials and Design. Vol.66, pp.129-136, October 2014.
[10] J. Jiang, H. V. Atkinson, Y. Wang, “Microstructure and Mechanical Properties of 7005 Aluminum Alloy Components Formed by Thixoforming”, Journal of Materials Science & Technology. Vol.33, pp.379-388, April 2017.
[11] B. Zhou, B. Liu, S. Zhang, “The Advancement of 7XXX Series Aluminum Alloys for Aircraft Structures: A Review”, Metals - Open Access Metallurgy Journal. Vol.11, April 2021.
[12] R. Tandon, K. K. Mehta, R. Manna, R. K. Mandal, “Microstructure and Mechanical Properties of the AA7075T7352 Aluminum Alloy”, Transactions of the Indian Institute of Metals. Vol.74, pp.1509-1520, April 2021.
[13] S. Hebbar, L. Kertsch, A. Butz, “Optimizing Heat Treatment Parameters for the W-Temper Forming of 7xxx Series Aluminum Alloys”, Metals - Open Access Metallurgy Journal. Vol.10, October 2020.
[14] L. K. Berg, J. Gjønnes, VHansen, X. ZLi, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L. RWallenberg, “GP-zones in Al–Zn–Mg alloys and their role in artificial aging”, Acta Materialia. Vol.49, pp.3443-3451, October 2001.
[15] G. Sha, A. Cerezo, “Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050)”, Acta Materialia. Vol.52, pp.4503-4516, September 2004.
[16] W. Guoab, J. Guoc, J. Wangab, M. Yangab, H. Liab, X. Wend, J. Zhang, “Evolution of precipitate microstructure during stress aging of an Al–Zn–Mg–Cu alloy”, Materials Science and Engineering: A. Vol.634, pp.167-175, May 2015.
[17] J. Chen, L. Zhen, S. Yang, W. Shao, S. Dai, “Investigation of precipitation behavior and related hardening in AA 7055 aluminum alloy”, Materials Science and Engineering: A. Vol.500, pp.34-42, January 2009.
[18] X. Fang, M. Song, K. Li, Y. Du, D. Zhao, C. Jiang, H. Zhang, “Effects of Cu and Al on the crystal structure and composition of η (MgZn2) phase in over-aged Al–Zn–Mg–Cu alloys”, Journal of Materials Science. Vol.47, pp.5419-5427, April 2012.
[19] M. Dumont, W. Lefebvre, B. Doisneau-Cottignies, A. Deschamps, “Characterisation of the composition and volume fraction of η′ and η precipitates in an Al–Zn–Mg alloy by a combination of atom probe, small-angle X-ray scattering and transmission electron microscopy”, Acta Materialia. Vol.53, pp.2881-2892, June 2005.
[20] J. Z. Liu, J. H. Chen, X. B. Yang, S. Ren, C. L. Wu, H. Y. Xu, J. Zou, “Revisiting the precipitation sequence in Al–Zn–Mg-based alloys by high-resolution transmission electron microscopy”, Scripta Materialia. Vol.63, pp.1061-1064, August 2010.
[21] R. Mohammadzadeh, M. Mohammadzadeh, “Effect of grain boundary misorientation on the apparent diffusivity in nanocrystalline aluminum by atomistic simulation study”, Journal of Applied Physics. Vol.124, pp.1-11, July 2018.
[22] L. Hong, W. W. Feng, X. B. Qing, Z. Y. An, L. Z. Hui, L. X. Wu, “Ageing precipitation and strengthening behavior of the spray formed Al-Zn-Mg-Cu alloy”, Advanced Materials Research. Vol.535-537, pp.903-908, June 2012.
[23] J. A. Wert, Q. Liu, N. Hansen, “Dislocation boundaries and active slip systems”, Acta Metallurgica et Materialia. Vol.43, pp.4156-5163, November 1995.
[24] S. Msolli, Z. Zhang, D. H. L. Seng, Z. Zhang, J. Guo, C.D. Reddy, N. Sridhar, J. Pan, B. H. Tan, Q. Loi, “An experimentally validated dislocation density based computational framework for predicting microstructural evolution in cold spray process”, International Journal of Solids and Structures. Vol.225, pp.1-23, April 2021.
[25] D. Kuhlmann-Wilsdorf, N. Hansen, “Geometrically necessary, incidental and subgrain boundaries”, Scripta Metallurgica et Materialia. Vol.25, pp.1557-1562, July 1991.
[26] C. Hong, X. Huang, G. Winther, “Dislocation content of geometrically necessary boundaries aligned with slip planes in rolled aluminum”, Philosophical Magazine. Vol.93, pp.3118-3141, Jun 2013.
[27] Q. Liua, Z. Yaoa, A. Godfreya, W. Liua, “Effect of particles on microstructural evolution during cold rolling of the aluminum alloy AA3104”, Journal of Alloys and Compounds. Vol.482, pp.264-271, April 2009.
[28] S. A. H. Motaman, U. Prahl, ” Microstructural constitutive model for polycrystal viscoplasticity in cold and warm regimes based on continuum dislocation dynamics”, Journal of the Mechanics and Physics of Solids. Vol.122, pp.205-243, January 2019.
[29] Q. Liu, H. Hansen, “Geometrically necessary boundaries and incidental dislocation boundaries formed during cold deformation”, Scripta Metallurgica et Materialia. Vol.32, pp.1289-1295, October 1994.
[30] N. Hansen, X. Huang, W. Pantleon, G. Winther, “Grain orientation and dislocation patterns”, Philosophical Magazine. Vol.86, pp.3981-3994, February 2006.
[31] Q. Xing, X. Huang, N. Hansen, “Recovery of Heavily Cold-Rolled Aluminum: Effect of Local Texture”, Metallurgical and Materials Transactions A. Vol.37, pp.1311-1322, April 2006.
[32] S. X. Ding, J. L. Lin, C. P. Chang, P. W. Kao, “Microstructural characterization of warm-worked commercially pure aluminum”, Metallurgical and Materials Transactions A. Vol.37, pp.1065-1073, March 2006.
[33] W. Pantleon, N. Hansen, “Dislocation boundaries—the distribution function of disorientation angles”, Acta Materialia. Vol.8, pp.1479-1493. May 2001.
[34] S. Kang, B. Min, H. Kim, D. S. Wilkinson, “Effect of Asymmetric Rolling on the Texture and Mechanical”, Metallurgical and Materials Transactions A. Vol.36, pp.3141-3149, November 2005.
[35] H. R. Wenk, P. V. Houtte, “Texture and anisotropy”, Reports on Progress in Physics. Vol.67, July 2004.
[36] L. A. I. Kestens, H. Pirgazi, “Texture formation in metal alloys with cubic crystal structures”, Materials Science and Technology. Vol.32, pp.1303-1315, September 2016.
[37] A. Najafi, E. Marin, M. Rais-Rohani, “Influence of Anisotropic Texture on Crushing Behavior of Square Tubes”, American Institute of Aeronautics and Astronautics, Jun 2012.
[38] S. KANG, B. MIN, H. KIM, D. S. WILKINSON, J. KANG, “Effect of Asymmetric Rolling on the Texture and Mechanical Properties of AA6111-Aluminum Sheet”, METALLURGICAL AND MATERIALS TRANSACTIONS A. Vol.36 ,pp.33141-3149, November 2005.
[39] K. J. Kim, S. T. Won, J. H. Park, “Texture analysis of 5182 aluminum alloy sheets for improved drawability by rolling process”, Advanced Computational Engineering and Experimenting. Vol.43, pp.361-473, May 2012.
[40] J. Pistor, C. Körner, “A novel mechanism to generate metallic single crystals”, Scientific Reports. Vol.11, December 2021.
[41] M. A. Tschopp, D. L. McDowell, “Tension-compression asymmetry in homogeneous dislocation nucleation in single crystal copper”, Applied Physics Letters. Vol.90, March 2007.
[42] K. Zhang, B. Holmedal, T. Manik, A. Saai, “Assessment of advanced Taylor models, the Taylor factor and yieldsurface exponent for FCC metals”, International Journal of Plasticity. Vol.114, pp.1-38, November 2018.
[43] J .R. Hirsch, E. Aryshesnkij, S. Konovaloz, “Slip System Selection and Taylor Factor Evolution in FCC Metals”, SSRN Electronic Journal. Jun 2020.
[44] B. Clausen, T. Lorentzen, T. Leffers, “Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses”, Acta Materialia. Vol.46, pp.3087-3098, May 1998.
[45] A. English, G. Chin, “On the variation of wire texture with stacking fault energy in f.c.c. metals and alloys”, Acta Metallurgica. Vol.13, pp.1013-1016, September 1965.
[46] X. Wu, “The Correlation of Texture and the Formation of the Adiabatic Shear Band in 7XXX Aluminum Alloy during Dynamic Loading”, Discrete Dynamics in Nature and Society. Vol.2021, pp.1-8, July 2021.
[47] J. Chen, W. Yan, B. Li, X. Ma, X. Du, X. Fan, “Microstructure and texture evolution of cold drawing 〈110〉 single crystal copper”, Science China Technological Sciences. Vol.56, pp.1551-1559, June 2011.
[48] G. Winther, “Slip systems extracted from lattice rotations and dislocation structures”, Acta Materialia. Vol.56, pp.1919-1932, May 2008.
[49] C. C. Merriman, D. P. Field, P. Trivedi, “Orientation dependence of dislocation structure evolution during cold rolling of aluminum”, Materials Science and Engineering A. Vol.494, pp.28-35, October 2008.
[50] X. Zhang, C. V. Nielsen, N. Hansen, C. M. A. Silva, P. A. F. Martins, “Local stress and strain in heterogeneously deformed aluminum: A comparison analysis by microhardness, electron microscopy and finite element modelling”, International Journal of Plasticity. Vol.115, pp.93-110, April 2019.
[51] O. Engler, V. Randle, “Introduction to Texture Analysis : Macrotexture, Microtexture, and Orientation Mapping”, Second Edition, CRC Press, U.S, November 2009.
[52] S. Zhang, W. Liu, J. Wan, R. D. K. Misra, Q. Wang, C. Wang, “The grain size and orientation dependence of geometrically necessary dislocations in polycrystalline aluminum during monotonic deformation: Relationship to mechanical behavior”, Materials Science and Engineering: A. Vol.775, pp.1-6, February 2020.
[53] O. Rezvanian, M. A. Zikry, A. M. Rajendran, “Statistically stored, geometrically necessary and grain boundary dislocation densities: microstructural representation and modelling”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. Vol.463, pp.2833-2853, August 2007.
[54] U. F. Kocks, “Polyslip in single crystalsGlissement multiple des monocristauxVielfachgleitung in einkristallen”, Acta Metallurgica. Vol.8, pp.345-352, June 1960.
[55] A. M. Kliauga, R. E. Bolmaro, M. Ferrante, “The evolution of texture in an equal channel pressed aluminum AA1050”, Materials Science and Engineering: A. Vol.623, pp.22-31, January 2015.
[56] R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials”, Wiley. 6th edition, 2002.
[57] A. Bois-Brochu, C. Blais, F. A. T. Goma, D. Larouche, J. Boselli, M. Brochu, “Characterization of Al–Li 2099 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties”, Materials Science and Engineering: A. Vol.597, pp.62-69, March 2014.
[58] J. W. Wyrzykowski, M. W. Grabski, “The Hall–Petch relation in aluminium and its dependence on the grain boundary structure”, Philosophical Magazine A. Vol.53, pp.505-520, September 1986.
[59] W. F. Hosford, “Mechanical Behavior of Materials”, 2nd edition, Cambridge University Press, USA, 2009.
[60] D. Kuhlmann-Wilsdorf, “LEDS: Properties and effects of low energy dislocation structures”, Materials Science and Engineering. Vol.86, pp.53-66, February 1987.
[61] A. Rollett, F. J. Humphreys, G. S. Rohrer, M. Hatherly, “Recrystallization and Related Annealing Phenomena”, 2nd edition, Burlington : Elsevier Science, USA, 2004.
[62] O. DSherby, J. L. Lytton, J. E. Dorn, “Activation Energies for creep of High-purity Aluminum”, Acta Metallurgica. Vol.5, pp. 219-227, April 1957.
[63] H. J. McQueen, J. E. Hockett, “Microstructures of aluminum compressed at various rates and temperatures”, Metallurgical Transactions. Vol.1, pp.2997–3004, November 1970.
[64] D. Raabe, “Physical Metallurgy”, 5nd edition, Elsevier, USA, 2014.
[65] Y. Li, L. Sun, H. Liu, Y. Wang, Z. Liu, “Preparation of single-crystal metal substrates for the growth of high-quality two-dimensional materials”, Inorganic Chemistry Frontiers. Vol.8, pp.182-200, October 2020.
[66] C. Shi, J. Lai, X. G. Chen, “Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation”, Materials. Vol.7, pp.244-264, Jan 2014.
[67] C. Xu, H. He, Z. Xue, L. Li, “A detailed investigation on the grain structure evolution of AA7005 aluminum alloy during hot deformation”, Materials Characterization. Vol.171, pp.1-12, December 2020.
[68] Q. Y. Yang, Z. H. Deng, Z. q. Zhang, Q. Liu, Z. H. Jia, G. J. Huang, “Effects of strain rate on flow stress behavior and dynamic recrystallization mechanism of Al-Zn-Mg-Cu aluminum alloy during hot deformation”, Materials Science and Engineering: A. Vol.662, pp.204-213, April 2016.
[69] M. E. Kassner, S. R. Barrabes, “New developments in geometric dynamic recrystallization”, Materials Science and Engineering: A. Vol.410, pp.152-155, November 2005.
[70] P. K. Saha, “Aluminum Extrusion Technology”, 1nd edition , ASM International, USA, 2000.
[71] G. E. Dieter, H. A. Kuhn, S. L. Semiatin, “Handbook of Workability and Process Design”, 1nd edition , ASM International, USA, 2003.
[72] A. Güzel, A. Jäger, F. Parvizian, H. G. Lambers, A. E. Tekkaya, B. Svendsen, H. J. Maier, “A new method for determining dynamic grain structure evolution during hot aluminum extrusion”, Journal of Materials Processing Technology. Vol.212, pp.323-330. January 2012.
[73] S. Wang, B. Luo, Z. Bai, Y. Zheng, C. He, G. Jing, “Revealing the aging time on the precipitation process and stress corrosion properties of 7N01 aluminium alloy” Vacuum . Vol.175, pp.1-10, March 2020.
[74] M. Kammler,” Localization of the Shear Zone in Extrusion Processes by means of Finite Element Analysis”, Key Engineering Materials. Vol.424, pp.222-226, December 2009.
[75] S. Kaneko, K. Murakami, T. Sakaic, “Effect of the extrusion conditions on microstructure evolution f the extruded Al–Mg–Si–Cu alloy rods”, Materials Science and Engineering A. Vol.500, pp.8-15, January 2009.
[76] L. Kubin, T. Hoc, B. Devincre, “Dynamic recovery and its orientation dependence in face-centered cubic crystals”, Acta Materialia. Vol.57, pp. 2567-2575, May 2009.
[77] L. P. Kubin, B. Devincre, T. Hoc, “Inhibited dynamic recovery and screw dislocation annihilation in multiple slip of fcc single crystals”, Philosophical Magazine. Vol.86, pp.4023-4036, November 2010.
[78] J. Zhao, Y. Deng, J. Tang, J. Zhang, “Effect of gradient grain structures on corrosion resistance of extruded Al–Zn–Mg–Cu alloy”, Journal of Alloys and Compounds. Vol.831, pp.1-6, August 2020.
[79] A. D. Rollett, G. Gottstein, L. S. Shvindlerman, D. A. Molodov, “Grain boundary mobility - A brief review”, International Journal of Materials Research. Vol.95, December 2021.
[80] A. R. Eivania, H.R. Jafarian, J. Zhou, “Simulation of peripheral coarse grain structure during hot extrusion of AA7020 aluminum alloy”, Journal of Manufacturing Processes. Vol.157, pp.881-892, September 2020.
[81] S. Oda, S. Tanaka, “Effect of local texture and residual stress on the bendability of extruded 6000-series Al alloy profiles”, Materials Science and Engineering: A. Vol.829, pp.1-8, January 2022.
[82] Y. Mahmoodkhani, J. Chen, M. A. Wells, W. J. Poole, N. C. Parson, “The Effect of Die Bearing Geometry on Surface Recrystallization During Extrusion of an Al-Mg-Si-Mn Alloy”, Metallurgical and Materials Transactions: A. Vol.50, pp.5324–5335, November 2019.
[83] A. R. Eivani, J. Zhou, “Application of physical and numerical simulations for interpretation of peripheral coarse grain structure during hot extrusion of AA7020 aluminum alloy”, Journal of Alloys and Compounds. Vol.725, PP.41-53, November 2017.
[84] S. H. Souza, R. L. Plaut, N. B. Lima, R. R. Oliveira, A. F. Padilha, “The Occurrence of a Peripheral Coarse Grain Zone (PCGZ) in Extruded Bars of AA 7108”, Materials Science Forum. Vol.1060, pp.1141-1146, January 2021.
[85] W. H. V. Geertruyden, H. M. Browne, W. Z. Misiolek, P. T. Wang, “Evolution of Surface Recrystallization during Indirect Extrusion of 6xxx Aluminum Alloys”, Metallurgical and Materials Transactions A. Vol.36, pp.1049-1056, April 2005.
[86] S. Abolghasem, S. Basu, M. R. Shankar, “Quantifying the progression of dynamic recrystallization in severe shear deformation at high strain rates”, Journal of Materials Research. Vol.28, pp.2056-2069, June 2013.
[87]L. Chen, G. Chen, J. Tang, G. Zhao, C. Zhang, “Evolution of grain structure, micro-texture and second phase during porthole die extrusion of Al–Zn–Mg alloy”, Materials Characterization. Vol.158, pp.1-10, October 2019.
[88] M. N. J. Alawad, “Modification of the Brazilian indirect tensile strength formula for better estimation of the tensile strength of rocks and rock-like geomaterials”, Journal of King Saud University - Engineering Sciences. Vol.34, pp. 147-154, February 2022.
[89] X. Fan, Y. Li, C. Xu, B. Wang, R. Peng, J. Chen “Improved mechanical anisotropy and texture optimization of a 3xx aluminum alloy by differential temperature rolling”, Materials Science and Engineering: A. Vol.799, January 2021.
[90] X. Wang, B. Shen, L. Deng, J. Li, “Effects of original orientation combination on substructure characteristics during continuous dynamic recrystallization in an extruded Al-Cu-Li alloy”, Materials Characterization. Vol.130, pp.113-122, January 2018.
[91] Y. Wang, G. Zhao, X. Chen, X. Xu, L. Chen, C. Zhang, ”Effect of inter-annealing between two stages of extrusion on the microstructure and mechanical property for spray deposited Al–Cu–Li alloy 2195”, Journal of Materials Research and Technology. Vol.8, pp. 3891-3907, October 2019.
[92] P. Noell, J. Carroll, K. Hattar, B. Clark, B. Boyce, “Do voids nucleate at grain boundaries during ductile rupture?”, Acta Materialia. Vol.137, pp.103-114, September 2017.
指導教授 施登士(Teng-Shih Shih) 審核日期 2022-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明