參考文獻 |
[1] P. Su, A. Gerlich, M. Yamamoto, T. H. North, “Formation and retention of local melted films in AZ91 friction stir spot welds”, Journal of Materials Science. Vol.42, pp.9954-9965, December 2007.
[2] K. Lu, “Stabilizing nanostructures in metals using grain and twin boundary architectures”, Nature Reviews Materials. Vol.1, pp.1-13, May 2016.
[3] F.H. Cao, J.X. Zheng, Y. Jiang, B. Chen, Y.R. Wang, T. Hu, “Experimental and DFT characterization of η′ nano-phase and its interfaces in Al-Zn-Mg-Cu alloys”, Acta Metall. Vol.164, pp.207-219, February 2019.
[4] D.M. Liu, B.Q. Xiong, F.G. Bian, Z.H. Li, X.W. Li, Y.G. Zhang, Q.S. Wang, G.L. Xie, F. Wang, H.W. Liu, “Quantitative study of nanoscale precipitates in Al-Zn-Mg-Cu alloys with different chemical compositions”, Materials Science and Engineering: A. Vol.639 , pp.245-251, July 2015.
[5] L. Agrawal, R. Yadav, A. Sexena, “Effect of Magnesium Content on the Mechanical Properties of Al-Zn-Mg Alloys”, International Journal on Emerging Technologies. Vol.1, pp.137-140, April 2012.
[6] M. C. Carroll and P. I. Gouma, “Effects of Zn additions on the grain boundary precipitation and corrosion of Al5083”, Scripta mater. Vol. 42, pp. 335-340, January 2000.
[7] J. Tang, J. Wang, J. Teng, G. Wang, D. Fu, H. Zhang, F. Jiang, “Effect of Zn content on the dynamic softening of Al–Zn–Mg–Cu alloys during hot compression deformation”, Vacuum. Vol.184, pp.1-10, February 2021.
[8] S. Jin, A. Wang, K. Wang, W. Li, B. Wan, T. Zhai, “Significant strengthening effect in ultra-fine grained Al alloy made by fast solidification and hot extrusion processes”, Journal of Materials Research and Technology. Vol.16, pp.1761-1769, February 2022.
[9] L. Chen, G. Zhao, J. Yu, W. Zhang, “Constitutive analysis of homogenized 7005 aluminum alloy at evaluated temperature for extrusion process”, Materials and Design. Vol.66, pp.129-136, October 2014.
[10] J. Jiang, H. V. Atkinson, Y. Wang, “Microstructure and Mechanical Properties of 7005 Aluminum Alloy Components Formed by Thixoforming”, Journal of Materials Science & Technology. Vol.33, pp.379-388, April 2017.
[11] B. Zhou, B. Liu, S. Zhang, “The Advancement of 7XXX Series Aluminum Alloys for Aircraft Structures: A Review”, Metals - Open Access Metallurgy Journal. Vol.11, April 2021.
[12] R. Tandon, K. K. Mehta, R. Manna, R. K. Mandal, “Microstructure and Mechanical Properties of the AA7075T7352 Aluminum Alloy”, Transactions of the Indian Institute of Metals. Vol.74, pp.1509-1520, April 2021.
[13] S. Hebbar, L. Kertsch, A. Butz, “Optimizing Heat Treatment Parameters for the W-Temper Forming of 7xxx Series Aluminum Alloys”, Metals - Open Access Metallurgy Journal. Vol.10, October 2020.
[14] L. K. Berg, J. Gjønnes, VHansen, X. ZLi, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L. RWallenberg, “GP-zones in Al–Zn–Mg alloys and their role in artificial aging”, Acta Materialia. Vol.49, pp.3443-3451, October 2001.
[15] G. Sha, A. Cerezo, “Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050)”, Acta Materialia. Vol.52, pp.4503-4516, September 2004.
[16] W. Guoab, J. Guoc, J. Wangab, M. Yangab, H. Liab, X. Wend, J. Zhang, “Evolution of precipitate microstructure during stress aging of an Al–Zn–Mg–Cu alloy”, Materials Science and Engineering: A. Vol.634, pp.167-175, May 2015.
[17] J. Chen, L. Zhen, S. Yang, W. Shao, S. Dai, “Investigation of precipitation behavior and related hardening in AA 7055 aluminum alloy”, Materials Science and Engineering: A. Vol.500, pp.34-42, January 2009.
[18] X. Fang, M. Song, K. Li, Y. Du, D. Zhao, C. Jiang, H. Zhang, “Effects of Cu and Al on the crystal structure and composition of η (MgZn2) phase in over-aged Al–Zn–Mg–Cu alloys”, Journal of Materials Science. Vol.47, pp.5419-5427, April 2012.
[19] M. Dumont, W. Lefebvre, B. Doisneau-Cottignies, A. Deschamps, “Characterisation of the composition and volume fraction of η′ and η precipitates in an Al–Zn–Mg alloy by a combination of atom probe, small-angle X-ray scattering and transmission electron microscopy”, Acta Materialia. Vol.53, pp.2881-2892, June 2005.
[20] J. Z. Liu, J. H. Chen, X. B. Yang, S. Ren, C. L. Wu, H. Y. Xu, J. Zou, “Revisiting the precipitation sequence in Al–Zn–Mg-based alloys by high-resolution transmission electron microscopy”, Scripta Materialia. Vol.63, pp.1061-1064, August 2010.
[21] R. Mohammadzadeh, M. Mohammadzadeh, “Effect of grain boundary misorientation on the apparent diffusivity in nanocrystalline aluminum by atomistic simulation study”, Journal of Applied Physics. Vol.124, pp.1-11, July 2018.
[22] L. Hong, W. W. Feng, X. B. Qing, Z. Y. An, L. Z. Hui, L. X. Wu, “Ageing precipitation and strengthening behavior of the spray formed Al-Zn-Mg-Cu alloy”, Advanced Materials Research. Vol.535-537, pp.903-908, June 2012.
[23] J. A. Wert, Q. Liu, N. Hansen, “Dislocation boundaries and active slip systems”, Acta Metallurgica et Materialia. Vol.43, pp.4156-5163, November 1995.
[24] S. Msolli, Z. Zhang, D. H. L. Seng, Z. Zhang, J. Guo, C.D. Reddy, N. Sridhar, J. Pan, B. H. Tan, Q. Loi, “An experimentally validated dislocation density based computational framework for predicting microstructural evolution in cold spray process”, International Journal of Solids and Structures. Vol.225, pp.1-23, April 2021.
[25] D. Kuhlmann-Wilsdorf, N. Hansen, “Geometrically necessary, incidental and subgrain boundaries”, Scripta Metallurgica et Materialia. Vol.25, pp.1557-1562, July 1991.
[26] C. Hong, X. Huang, G. Winther, “Dislocation content of geometrically necessary boundaries aligned with slip planes in rolled aluminum”, Philosophical Magazine. Vol.93, pp.3118-3141, Jun 2013.
[27] Q. Liua, Z. Yaoa, A. Godfreya, W. Liua, “Effect of particles on microstructural evolution during cold rolling of the aluminum alloy AA3104”, Journal of Alloys and Compounds. Vol.482, pp.264-271, April 2009.
[28] S. A. H. Motaman, U. Prahl, ” Microstructural constitutive model for polycrystal viscoplasticity in cold and warm regimes based on continuum dislocation dynamics”, Journal of the Mechanics and Physics of Solids. Vol.122, pp.205-243, January 2019.
[29] Q. Liu, H. Hansen, “Geometrically necessary boundaries and incidental dislocation boundaries formed during cold deformation”, Scripta Metallurgica et Materialia. Vol.32, pp.1289-1295, October 1994.
[30] N. Hansen, X. Huang, W. Pantleon, G. Winther, “Grain orientation and dislocation patterns”, Philosophical Magazine. Vol.86, pp.3981-3994, February 2006.
[31] Q. Xing, X. Huang, N. Hansen, “Recovery of Heavily Cold-Rolled Aluminum: Effect of Local Texture”, Metallurgical and Materials Transactions A. Vol.37, pp.1311-1322, April 2006.
[32] S. X. Ding, J. L. Lin, C. P. Chang, P. W. Kao, “Microstructural characterization of warm-worked commercially pure aluminum”, Metallurgical and Materials Transactions A. Vol.37, pp.1065-1073, March 2006.
[33] W. Pantleon, N. Hansen, “Dislocation boundaries—the distribution function of disorientation angles”, Acta Materialia. Vol.8, pp.1479-1493. May 2001.
[34] S. Kang, B. Min, H. Kim, D. S. Wilkinson, “Effect of Asymmetric Rolling on the Texture and Mechanical”, Metallurgical and Materials Transactions A. Vol.36, pp.3141-3149, November 2005.
[35] H. R. Wenk, P. V. Houtte, “Texture and anisotropy”, Reports on Progress in Physics. Vol.67, July 2004.
[36] L. A. I. Kestens, H. Pirgazi, “Texture formation in metal alloys with cubic crystal structures”, Materials Science and Technology. Vol.32, pp.1303-1315, September 2016.
[37] A. Najafi, E. Marin, M. Rais-Rohani, “Influence of Anisotropic Texture on Crushing Behavior of Square Tubes”, American Institute of Aeronautics and Astronautics, Jun 2012.
[38] S. KANG, B. MIN, H. KIM, D. S. WILKINSON, J. KANG, “Effect of Asymmetric Rolling on the Texture and Mechanical Properties of AA6111-Aluminum Sheet”, METALLURGICAL AND MATERIALS TRANSACTIONS A. Vol.36 ,pp.33141-3149, November 2005.
[39] K. J. Kim, S. T. Won, J. H. Park, “Texture analysis of 5182 aluminum alloy sheets for improved drawability by rolling process”, Advanced Computational Engineering and Experimenting. Vol.43, pp.361-473, May 2012.
[40] J. Pistor, C. Körner, “A novel mechanism to generate metallic single crystals”, Scientific Reports. Vol.11, December 2021.
[41] M. A. Tschopp, D. L. McDowell, “Tension-compression asymmetry in homogeneous dislocation nucleation in single crystal copper”, Applied Physics Letters. Vol.90, March 2007.
[42] K. Zhang, B. Holmedal, T. Manik, A. Saai, “Assessment of advanced Taylor models, the Taylor factor and yieldsurface exponent for FCC metals”, International Journal of Plasticity. Vol.114, pp.1-38, November 2018.
[43] J .R. Hirsch, E. Aryshesnkij, S. Konovaloz, “Slip System Selection and Taylor Factor Evolution in FCC Metals”, SSRN Electronic Journal. Jun 2020.
[44] B. Clausen, T. Lorentzen, T. Leffers, “Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses”, Acta Materialia. Vol.46, pp.3087-3098, May 1998.
[45] A. English, G. Chin, “On the variation of wire texture with stacking fault energy in f.c.c. metals and alloys”, Acta Metallurgica. Vol.13, pp.1013-1016, September 1965.
[46] X. Wu, “The Correlation of Texture and the Formation of the Adiabatic Shear Band in 7XXX Aluminum Alloy during Dynamic Loading”, Discrete Dynamics in Nature and Society. Vol.2021, pp.1-8, July 2021.
[47] J. Chen, W. Yan, B. Li, X. Ma, X. Du, X. Fan, “Microstructure and texture evolution of cold drawing 〈110〉 single crystal copper”, Science China Technological Sciences. Vol.56, pp.1551-1559, June 2011.
[48] G. Winther, “Slip systems extracted from lattice rotations and dislocation structures”, Acta Materialia. Vol.56, pp.1919-1932, May 2008.
[49] C. C. Merriman, D. P. Field, P. Trivedi, “Orientation dependence of dislocation structure evolution during cold rolling of aluminum”, Materials Science and Engineering A. Vol.494, pp.28-35, October 2008.
[50] X. Zhang, C. V. Nielsen, N. Hansen, C. M. A. Silva, P. A. F. Martins, “Local stress and strain in heterogeneously deformed aluminum: A comparison analysis by microhardness, electron microscopy and finite element modelling”, International Journal of Plasticity. Vol.115, pp.93-110, April 2019.
[51] O. Engler, V. Randle, “Introduction to Texture Analysis : Macrotexture, Microtexture, and Orientation Mapping”, Second Edition, CRC Press, U.S, November 2009.
[52] S. Zhang, W. Liu, J. Wan, R. D. K. Misra, Q. Wang, C. Wang, “The grain size and orientation dependence of geometrically necessary dislocations in polycrystalline aluminum during monotonic deformation: Relationship to mechanical behavior”, Materials Science and Engineering: A. Vol.775, pp.1-6, February 2020.
[53] O. Rezvanian, M. A. Zikry, A. M. Rajendran, “Statistically stored, geometrically necessary and grain boundary dislocation densities: microstructural representation and modelling”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. Vol.463, pp.2833-2853, August 2007.
[54] U. F. Kocks, “Polyslip in single crystalsGlissement multiple des monocristauxVielfachgleitung in einkristallen”, Acta Metallurgica. Vol.8, pp.345-352, June 1960.
[55] A. M. Kliauga, R. E. Bolmaro, M. Ferrante, “The evolution of texture in an equal channel pressed aluminum AA1050”, Materials Science and Engineering: A. Vol.623, pp.22-31, January 2015.
[56] R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials”, Wiley. 6th edition, 2002.
[57] A. Bois-Brochu, C. Blais, F. A. T. Goma, D. Larouche, J. Boselli, M. Brochu, “Characterization of Al–Li 2099 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties”, Materials Science and Engineering: A. Vol.597, pp.62-69, March 2014.
[58] J. W. Wyrzykowski, M. W. Grabski, “The Hall–Petch relation in aluminium and its dependence on the grain boundary structure”, Philosophical Magazine A. Vol.53, pp.505-520, September 1986.
[59] W. F. Hosford, “Mechanical Behavior of Materials”, 2nd edition, Cambridge University Press, USA, 2009.
[60] D. Kuhlmann-Wilsdorf, “LEDS: Properties and effects of low energy dislocation structures”, Materials Science and Engineering. Vol.86, pp.53-66, February 1987.
[61] A. Rollett, F. J. Humphreys, G. S. Rohrer, M. Hatherly, “Recrystallization and Related Annealing Phenomena”, 2nd edition, Burlington : Elsevier Science, USA, 2004.
[62] O. DSherby, J. L. Lytton, J. E. Dorn, “Activation Energies for creep of High-purity Aluminum”, Acta Metallurgica. Vol.5, pp. 219-227, April 1957.
[63] H. J. McQueen, J. E. Hockett, “Microstructures of aluminum compressed at various rates and temperatures”, Metallurgical Transactions. Vol.1, pp.2997–3004, November 1970.
[64] D. Raabe, “Physical Metallurgy”, 5nd edition, Elsevier, USA, 2014.
[65] Y. Li, L. Sun, H. Liu, Y. Wang, Z. Liu, “Preparation of single-crystal metal substrates for the growth of high-quality two-dimensional materials”, Inorganic Chemistry Frontiers. Vol.8, pp.182-200, October 2020.
[66] C. Shi, J. Lai, X. G. Chen, “Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation”, Materials. Vol.7, pp.244-264, Jan 2014.
[67] C. Xu, H. He, Z. Xue, L. Li, “A detailed investigation on the grain structure evolution of AA7005 aluminum alloy during hot deformation”, Materials Characterization. Vol.171, pp.1-12, December 2020.
[68] Q. Y. Yang, Z. H. Deng, Z. q. Zhang, Q. Liu, Z. H. Jia, G. J. Huang, “Effects of strain rate on flow stress behavior and dynamic recrystallization mechanism of Al-Zn-Mg-Cu aluminum alloy during hot deformation”, Materials Science and Engineering: A. Vol.662, pp.204-213, April 2016.
[69] M. E. Kassner, S. R. Barrabes, “New developments in geometric dynamic recrystallization”, Materials Science and Engineering: A. Vol.410, pp.152-155, November 2005.
[70] P. K. Saha, “Aluminum Extrusion Technology”, 1nd edition , ASM International, USA, 2000.
[71] G. E. Dieter, H. A. Kuhn, S. L. Semiatin, “Handbook of Workability and Process Design”, 1nd edition , ASM International, USA, 2003.
[72] A. Güzel, A. Jäger, F. Parvizian, H. G. Lambers, A. E. Tekkaya, B. Svendsen, H. J. Maier, “A new method for determining dynamic grain structure evolution during hot aluminum extrusion”, Journal of Materials Processing Technology. Vol.212, pp.323-330. January 2012.
[73] S. Wang, B. Luo, Z. Bai, Y. Zheng, C. He, G. Jing, “Revealing the aging time on the precipitation process and stress corrosion properties of 7N01 aluminium alloy” Vacuum . Vol.175, pp.1-10, March 2020.
[74] M. Kammler,” Localization of the Shear Zone in Extrusion Processes by means of Finite Element Analysis”, Key Engineering Materials. Vol.424, pp.222-226, December 2009.
[75] S. Kaneko, K. Murakami, T. Sakaic, “Effect of the extrusion conditions on microstructure evolution f the extruded Al–Mg–Si–Cu alloy rods”, Materials Science and Engineering A. Vol.500, pp.8-15, January 2009.
[76] L. Kubin, T. Hoc, B. Devincre, “Dynamic recovery and its orientation dependence in face-centered cubic crystals”, Acta Materialia. Vol.57, pp. 2567-2575, May 2009.
[77] L. P. Kubin, B. Devincre, T. Hoc, “Inhibited dynamic recovery and screw dislocation annihilation in multiple slip of fcc single crystals”, Philosophical Magazine. Vol.86, pp.4023-4036, November 2010.
[78] J. Zhao, Y. Deng, J. Tang, J. Zhang, “Effect of gradient grain structures on corrosion resistance of extruded Al–Zn–Mg–Cu alloy”, Journal of Alloys and Compounds. Vol.831, pp.1-6, August 2020.
[79] A. D. Rollett, G. Gottstein, L. S. Shvindlerman, D. A. Molodov, “Grain boundary mobility - A brief review”, International Journal of Materials Research. Vol.95, December 2021.
[80] A. R. Eivania, H.R. Jafarian, J. Zhou, “Simulation of peripheral coarse grain structure during hot extrusion of AA7020 aluminum alloy”, Journal of Manufacturing Processes. Vol.157, pp.881-892, September 2020.
[81] S. Oda, S. Tanaka, “Effect of local texture and residual stress on the bendability of extruded 6000-series Al alloy profiles”, Materials Science and Engineering: A. Vol.829, pp.1-8, January 2022.
[82] Y. Mahmoodkhani, J. Chen, M. A. Wells, W. J. Poole, N. C. Parson, “The Effect of Die Bearing Geometry on Surface Recrystallization During Extrusion of an Al-Mg-Si-Mn Alloy”, Metallurgical and Materials Transactions: A. Vol.50, pp.5324–5335, November 2019.
[83] A. R. Eivani, J. Zhou, “Application of physical and numerical simulations for interpretation of peripheral coarse grain structure during hot extrusion of AA7020 aluminum alloy”, Journal of Alloys and Compounds. Vol.725, PP.41-53, November 2017.
[84] S. H. Souza, R. L. Plaut, N. B. Lima, R. R. Oliveira, A. F. Padilha, “The Occurrence of a Peripheral Coarse Grain Zone (PCGZ) in Extruded Bars of AA 7108”, Materials Science Forum. Vol.1060, pp.1141-1146, January 2021.
[85] W. H. V. Geertruyden, H. M. Browne, W. Z. Misiolek, P. T. Wang, “Evolution of Surface Recrystallization during Indirect Extrusion of 6xxx Aluminum Alloys”, Metallurgical and Materials Transactions A. Vol.36, pp.1049-1056, April 2005.
[86] S. Abolghasem, S. Basu, M. R. Shankar, “Quantifying the progression of dynamic recrystallization in severe shear deformation at high strain rates”, Journal of Materials Research. Vol.28, pp.2056-2069, June 2013.
[87]L. Chen, G. Chen, J. Tang, G. Zhao, C. Zhang, “Evolution of grain structure, micro-texture and second phase during porthole die extrusion of Al–Zn–Mg alloy”, Materials Characterization. Vol.158, pp.1-10, October 2019.
[88] M. N. J. Alawad, “Modification of the Brazilian indirect tensile strength formula for better estimation of the tensile strength of rocks and rock-like geomaterials”, Journal of King Saud University - Engineering Sciences. Vol.34, pp. 147-154, February 2022.
[89] X. Fan, Y. Li, C. Xu, B. Wang, R. Peng, J. Chen “Improved mechanical anisotropy and texture optimization of a 3xx aluminum alloy by differential temperature rolling”, Materials Science and Engineering: A. Vol.799, January 2021.
[90] X. Wang, B. Shen, L. Deng, J. Li, “Effects of original orientation combination on substructure characteristics during continuous dynamic recrystallization in an extruded Al-Cu-Li alloy”, Materials Characterization. Vol.130, pp.113-122, January 2018.
[91] Y. Wang, G. Zhao, X. Chen, X. Xu, L. Chen, C. Zhang, ”Effect of inter-annealing between two stages of extrusion on the microstructure and mechanical property for spray deposited Al–Cu–Li alloy 2195”, Journal of Materials Research and Technology. Vol.8, pp. 3891-3907, October 2019.
[92] P. Noell, J. Carroll, K. Hattar, B. Clark, B. Boyce, “Do voids nucleate at grain boundaries during ductile rupture?”, Acta Materialia. Vol.137, pp.103-114, September 2017. |