博碩士論文 109323067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.145.46.232
姓名 杜建興(Jian-Xing Du)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 不同鍛造製程對AA2014鋁合金機械性質與抗腐蝕能力的影響
(Factors affecting the microstructure, tensile properties and corrosion resistance of AA2014 forgings)
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-4以後開放)
摘要(中) 本論文所使用材料為 AA2014 高強度鋁合金的擠製棒材進行退火並使用不同
的鍛造條件(包括鍛造模具及鍛造溫度),鍛造成型後進行固溶、淬水與時效處理
(T6)。研究目的在於探討不同鍛造溫度及鍛造縮減率等,對微結構組織產生的影響
包括二次相顆粒、動態再結晶、差排滑移、晶粒細化等,接著分析不同鍛造參數對
成型後鋁合金機械性質與抗腐蝕能力的影響。
AA2014 合金欲得到最高的降伏強度及極限抗拉強度,通常會採用 T6 頂時效
熱處理,但峰值時效熱處理會降低鋁合金的伸長率與韌性。鍛造製程有助於提高鋁
合金的強度及韌性,因此調查不同鍛造參數對性質的影響,可最佳化鋁合金強度及
韌性(toughness),抗鹽水腐蝕能力,研發成果可提供給業界作為設計與製造高強度
鋁合金的技術資料。
實驗結果分析顯示,在 440°C 進行壓縮率 62%的鍛造,能得到最高的 YS(降
伏強度):503MPa,以及 UTS(最大抗強度):567MPa;而在使用常溫及低溫鍛造在後
續進行頂時效處理會增加單位面積上二次相顆粒的數量以及單位面積上 40-45°的
高角度晶界,導致抗腐蝕能力下降。
摘要(英) Effects of different forging processes on the mechanical properties and corrosion
resistance of AA2014 aluminum alloys were investigated in this study. The AA2014
extruded bars were used to undergo annealing treatment and subject to different forging
processes (include different dies, forging temperatures and reduction ratios). Then, the
forged samples were removed to carry out solution treatment, water quenched and T6
artificial aging treatment. The target of this study is aiming to investigate the
microstructures of forged samples, including second phase particles, dynamic
recrystallization, dislocation tangling and grain refinement. In addition, the effect of
deformation on microstructure, mechanical properties and corrosion resistance would
also be investigated.
The high strength AA2xxx series aluminum alloys needs to obtain the highest yield
strength(YS) and ultimate tensile strength(UTS). Usually peck-aging T6 heat treatment
is used when using this alloy, but peck-aging heat treatment reduces the elongation and
toughness of aluminum alloy. Using the forging process could improve the strength and
toughness of aluminum alloy. The topics of this study is to assess the strength and
corrosion resistance of aluminum forgings (cold and hot forgings).
The analysis of the experimental results shows that the highest yield strength(YS):
503MPa and ultimate tensile strength(UTS): 567MPa can be obtained by forging at 440°C
with a compression rate of 62%; Aging treatment will increase the number of secondary
phase particles per unit area and high-angle grain boundaries of 40-45° per unit area,
resulting in a decrease in corrosion resistance.
關鍵字(中) ★ AA2014鍛造
★ 動態再結晶
★ 機械性質
★ 抗腐蝕能力
關鍵字(英) ★ AA2014 forging
★ dynamic recrystallization
★ mechanical properties
★ corrosion resistance
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 前言 1
第二章 文獻回顧 2
2-1 AA2014鋁合金介紹 2
2-2 AA2014鋁合金不同成形方式之微結構差異 2
2-3 添加元素對鋁合金的性質與微結構影響 5
2-3-1 Cu元素的影響 5
2-3-2 鎂、錳元素的影響 5
2-4 製程參數對鋁材材質微結構影響 6
2-4-1 不同成型參數對基地殘留空孔影響 6
2-4-2 添加合金元素與空孔的結合能力 8
2-5 鋁合金塑型變形過程的微結構變化 9
2-5-1 回復(Recovery) 9
2-5-2 動態回復Dynamic recovery (DRV) 10
2-5-3 再結晶(Recrystallization) 10
2-5-4 動態再結晶Dynamic recrystallization (DRX) [18]-[20] 11
2-6 AA2014合金強化機制分析與討論 15
2-7 鋁合金的鹽水腐蝕 22
2-7-1 鋁銅合金鹽水腐蝕 22
2-7-2 二次相顆粒對AA2014合金鹽水腐蝕影響 23
第三章 實驗方法與步驟 25
3-1 實驗材料 25
3-2 實驗用設備與觀測儀器介紹 25
3-3 實驗步驟 26
第四章 結果與討論 31
4-1 不同鍛造參數對AA2014 鍛件機械影響(UTS、YS、TEL、韌性) 31
4-2 不同鍛造參數對AA2014 鍛件微結構的影響 33
4-2-1 不同鍛造參數對AA2014 鍛件光學顯微組織的分析 33
4-2-2 不同鍛造參數對AA2014 鍛件晶粒影響 43
4-2-3 不同鍛造參數對AA2014 鍛件析出物的影響 48
4-3 不同鍛造參數對鋁合金鍛件抗鹽水腐蝕能力影響 53
4-3-1 AA2014鋁合金鍛件抗鹽水腐蝕測試分析 53
4-3-2 不同鋁合金材料(AA2014、AA6066、AA7075)抗腐蝕能力 60
第五章 結論 62
參考文獻 63
參考文獻 [1] J.R.Davis,“Aluminum and Aluminum Alloy”. Alloying: Understanding the Basics, pp.353-360,2001.
[2] K.S.Ghosh, K.Tripati, “Microstructural Characterization and Electrochemical Behavior of AA2014 Al-Cu-Mg-Si Alloy of Various Tempers”, Journal of Materials Engineering and Performance, Vol 27,pp.5926-5937,October 2018.
[3] S. Chen, F. Li, K. Chen, L. Huang, G. Peng, “Synergic effect of hot deformation temperature and pre-straining on ageing precipitates and mechanical property of 2014 Al alloy”, Material Characterization, Vol 167,110510, September 2010.
[4] H.Wang, C.Li, J.Li, X.Wei, R.Mei, “Effect of Deformation and Aging on Properties of Al-4.1%Cu-1.4%Mg Aluminum Alloy”, International Scholarly Research Notices, Vol 2013 , pp.8, September 2013.
[5] Peng-wei LI , Hui-zhong LI1, Lan HUANG, Xiao-peng LIANG, Ze-xiao ZHU,
“Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map”, Vol 27, pp. 1677-1688, August 2017.
[6] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, John J. Jonas, “Dynamic and postdynamic recrystallization under hot, cold and severe plastic deformation conditions”, Progress in Materials Science, Vol 60, pp.130-207, March 2014.
[7] N. Nafsin, H. M. M. A. Rashed, “Effects of Copper and Magnesium on Microstructure and Hardness of Al-Cu-Mg Alloys,” International Journal of Engineering and Advanced Technology, Vol 2, pp.533-536, June 2013.
[8] Lina M. Shehadeh , Issam S. Jalham , “The Effect of Adding Different Percentages of Manganese (Mn) and Copper (Cu) on the Mechanical Behavior of Aluminum”, Jordan Journal of Mechanical and Industrial Engineering ,Vol 10, pp.19-26, March 2016.
[9] M.S. Salleh, M.Z. Omar, J. Syarif, “The effects of Mg addition on the microstructure and mechanical properties of thixoformed Al–5%Si–Cu alloys”, Journal of Alloys and Compounds, Vol 621, pp. 121-130, February 2015.
[10] S. W Nam, D.H Lee, “The Effect of Mn on the Mechanical Behavior of AI Alloy”, Metals and Materials, Vol 6, pp.13-16, February 2000.
[11] L.H.Su, C.Lu, G.Y.Deng, K.Tieu, “Vacancy-Type Defects Study on Ultra-Fine Drained Aluminum Processed by Severe Plastic Deformation”, Science of Advanced Materials, Vol 6, pp.1-8, July 2014.
[12] M.Militzer, W.P Sun, J.J.Jonas, “Modelling the Effect of Deformation-Induced vacancies on Segregation and Precipitation”, Act metal.mater ,Vol 42,pp.133-141, January 1994.
[13] J.D.Robson, “Deformation Enhanced Diffusion in Aluminium Alloys”, Metallurgical and Materials Transactions A, Vol 51, pp.5401-5413, August 2020.
[14] C.Wolverton, “Solute–vacancy binding in aluminum”, Acta Materialia, Vol 55, pp.5867-5872, August 2007.
[15] T.Hasegawa, U.F.Kocks, “Thermal Recovery Processes in Deformed Aluminum”, Acta Metallurgica, Vol 27, pp. 1705-1716, March 1979.
[16] T.Kayser, “Characterization of microstructure in aluminum alloys based on electron backscatter diffraction”, Germany: Universitätsbibliothek, Dortmund, 2011.
[17] P.W.Li, H.Z.Li, L.Huang, X.p.Liang, Z.X.Zhu, “Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map”, Tran. Nonferrous Met. Soc. China, Vol 27, pp.1677-1688, January 2017.
[18] J. Zhang, Y. Yi, S. Huang, X. Mao, H. He, J. Tang, W. Guo, F. Dong, “Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation”, Material Science & Engineering, Vol 804,140650, February 2021.
[19] K. Huang, R.E. Log´e, “A review of dynamic recrystallization phenomena in metallic materials”, Material & Design, Vol 111, pp.548–574, December 2016.
[20] S.F. Chen, D.Y. Li, S.H. Zhang, H.N. Han, H.W. Lee, M.G. Lee, “Modelling continuous dynamic recrystallization of aluminum alloys based on the polycrystal plasticity approach”, International Journal of Plasticity, Vol 131, February 2020.
[21] R. Kaibyshev ,S. Malopheyev, “Mechanisms of dynamic recrystallization in aluminum alloys”, Materials Science Forum, Vol 794-796, pp.784-789, June 2014.
[22] R.J.Griffiths, D.Garcia, J.Song, V. K.Vasudevan, M.A.Steiner, W.Cai, H.Z.Yu, “Solid-State Additive Manufacturing of Aluminum and Copper using Additive Friction Stir Deposition: Process-Microstructure Linkages”, Materialia, Vol 15, March 2021.
[23] M. Zeren, “The effect of heat-treatment on aluminum-based piston alloys”, Material Design, Vol 28, pp.2511-2517, 2007.
[24] C. Zhang, Y. Du, S. Liu, Y. Liua, B. Sundman, Thermal conductivity of Al–Cu–Mg–Si alloys: Experimental measurement and CALPHAD modeling, Thermochimica Acta, Vol 635, pp.8-16, April 2016.
[25] D. G. Eskin , “Decomposition of supersaturated solid solutions in Al–Cu–Mg–Si alloys”, Journal of Material Science, Vol 38, pp.279-290, January 2003.
[26] M.Gazizov, C.D.Marioara, J.Friis, S.Wenner, R.Holmestad, “Precipitation behavior in an Al–Cu–Mg–Si alloy during ageing”, Materials Science&Engineering A, Vol 767, September 2019.
[27] Polmear , I.J, Light alloys: from traditional alloys to nanocrystals., Butterworth Heinemann, Vol 4,pp.57-60, December 2005.
[28] N.A.Belov, N.A.Avksent, “Quantitative Analysis of the Al-Cu-Mg-Mn-Si Phase Diagram as Applied to Commercial Alu-minum Alloys of Series 2XXX”, Metal Sci. Heat treatment, Vol 55, pp.358-363, November 2013.
[29] D.Wang, H.Zhang, H.Nagaumi, X.Li, J.Cui, “Microstructural Refinement and αDispersoid Evolution in Direct-Chill Cast Al-Mg-Si-Fe Alloy”, Advanced Engineering Materials, Vol 22, August 2020.
[30] H.Z.Li, Z.X.Zhu, X.P.Liang, P.W.LI, Y.L.QI, F.LV, L. Huang, “Effect of T6-treatments on microstructure and mechanical properties of forged Al−4.4Cu−0.7Mg−0.6Si alloy”, Trans. Nonferrous Met. Soc. China, Vol 27, pp.2539-2547, December 2017.
[31] F. Li, S. Chen, L. Huang, L. He, G. Chen, “Influence of deformation process on microstructure and properties of 2014 aluminum alloy”, Materials Science and Technology, Vol 36, pp.1465-1475, July 2020.
[32] C.Luo, X.Zhou, G.E.Thompson, A.E.Hughes, “Observations of intergranular corrosion in AA2024-T351: The influence of grain stored energy”, Corrosion Science, Vol 61, pp.35-44, August 2012.
[33] X.Zhang, Y.Jiao, Y.Yu, B.Liu, T.Hashimoto, H.Liu, Z.Dong, “Intergranular Corrosion in AA2024-T3 Aluminium Alloy: The Influence of Stored Energy and Prediction”, Corrosion Science, Vol 155, pp.1-12, July 2019.
[34] T.Hashimoto, X.Zhang, X.Zhou, P.Skeldon, S.J.Haigh, G.E.Thompson, “Investigation of dealloying of S phase (Al2CuMg) in AA 2024-T3”, Corrosion Science, Vol 103, pp.157-164, February 2016.
[35] J. Li, J. Dang, “A Summary of Corrosion Properties of Al-Rich Solid Solution and Secondary Phase Particles in Al Alloys”, Metals, Vol 7, pp.84, March 2017.
[36] R. G. Buchheit, R. P. Grant, P. F. Hiava, B. Mckenzie, G.L. Zender, “Local Dissolution Phenomena Associated with S Phase (AI2CuMg) Particles in Aluminum Alloy 2024-T3”, Journal of The Electrochemical Society, Vol 144, pp.2621-2618, August 1997.
[37] J.R.Galvele, S.M.D.Micheli, “Mechanism of Iftergranular Corrosion of Al-Cu Alloys”, Corrosion Science, Vol 10, pp.795-807, 1970.
[38] K.Srinivasa Rao,K.Prasad Rao,“PITTING CORROSION OF HEAT-TREATABLE ALUMINIUM ALLOYS AND WELDS: A REVIEW”, Transactions of the Indian Institute of Metals, Vol 57, pp.593-610, December 2004.
[39] N. Birbill, R.G. Buchheit,” Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys”, Journal of The Electrochemical Society, Vol 152(4), pp.140-150, March 2005.
[40] T.S Shih, H.S Yong, W.N Hsu, “Effects of Cryogenic Forging and Anodization on the Mechanical Properties and Corrosion Resistance of AA6066–T6 Aluminum Alloys”, Metals, Vol 6, March 2016.
[41] X.Zeng, X.G.Fan, H.W.Li, M.Zhan, S.H.Li, “Grain morphology related microstructural developments in bulk”, Material Science & Engineering: A, Vol 760, pp.328-338, July 2019.
[42] A. Medvedev, M. Murashkin, N. Enikeev, E. Medvedev, X. Sauvage, “Influence of
Morphology of Intermetallic Particles on the Microstructure and Properties
Evolution in Severely Deformed Al-Fe Alloys”, Metals, Vol 11, May 2021.
[43] M.Gavgali, B.Aksakal, “Effects of various homogenisation treatments on the hot workability of ingot aluminium alloy AA2014”, Material Science & Engineering: A, Vol 254, pp.189-199, October 1998.
[44] R.Mohammadzadeh, M.Mohammadzadeh, “Effect of grain boundary misorientation
on the apparent diffusivity in nanocrystalline aluminum by atomistic simulation
study”. J. App. Phy. Vol 124, July 2018.
[45] M.A.Tschopp, D.L.Mcdowell, “Asymmetric tilt grain boundary structure and energy
in copper and aluminium”, Philosophical Magazine, Vol 87, pp.3871-3892, Sptember 2007.
[46] X.Zhang, Y.Jiao, Y.Yu, B.Liu, T.Hashimoto, H.Liu, Z.Dong, “Intergranular corrosion in AA2024-T3 aluminium alloy: The influence of stored energy and prediction”, Corrosion Science, Vol 155 ,pp.1-12, July 2019.
[47] Z.Szklarska-Smialowska, “Pitting corrosion of aluminum”, Corrosion Science, Vol 41, pp.1743-1767, August 1999.
[48] 林松達,不同鍛造製程對 AA6061、AA6066 和 AA6082 鋁合金機械性質與抗腐蝕能力的影響,中央大學碩士論文,2019。
[49] 許赫驖,不同鍛造製程對 AA7075 鋁合金機械性質與抗腐蝕能力的影響,中央大學碩士論文,2021。
[50] Y. Kim, R.G. Buchheit, “A characterization of the inhibiting effect of Cu on metastable pitting in dilute Al–Cu solid solution alloys”, Elect.Acta, 52,2437-2446, February 2007.
[51] C.E. Ekuma, N.E. Idenyi, A.E. Umahi, “The Effects of Zinc Additions on the
corrosion susceptibility of Aluminum alloys in various tetraoxosulphate (VI) acid
environments”, J. Appl. Sci. Vol 7, pp.237–241, February 2007.
[52] R. Zhang, S.P. Knight, R.L. Holtz, R. Goswami, C.H.J. Davies, N. Birbilis, “A survey of sensitization in 5xxx series Aluminum alloys”, Corrosion, Vol 72, pp.144–159, August 2016.
[53] Yan, J.; Heckman, N.M.; Velasco, L.; Hodge, A.M. “Improve sensitization and
corrosion resistance of an Al-Mg alloy by optimization of grain boundaries”, Sci. Rep., Vol 6, May 2016.
指導教授 施登士(Teng-Shih Shih) 審核日期 2022-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明