參考文獻 |
[1] J.R.Davis,“Aluminum and Aluminum Alloy”. Alloying: Understanding the Basics, pp.353-360,2001.
[2] K.S.Ghosh, K.Tripati, “Microstructural Characterization and Electrochemical Behavior of AA2014 Al-Cu-Mg-Si Alloy of Various Tempers”, Journal of Materials Engineering and Performance, Vol 27,pp.5926-5937,October 2018.
[3] S. Chen, F. Li, K. Chen, L. Huang, G. Peng, “Synergic effect of hot deformation temperature and pre-straining on ageing precipitates and mechanical property of 2014 Al alloy”, Material Characterization, Vol 167,110510, September 2010.
[4] H.Wang, C.Li, J.Li, X.Wei, R.Mei, “Effect of Deformation and Aging on Properties of Al-4.1%Cu-1.4%Mg Aluminum Alloy”, International Scholarly Research Notices, Vol 2013 , pp.8, September 2013.
[5] Peng-wei LI , Hui-zhong LI1, Lan HUANG, Xiao-peng LIANG, Ze-xiao ZHU,
“Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map”, Vol 27, pp. 1677-1688, August 2017.
[6] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, John J. Jonas, “Dynamic and postdynamic recrystallization under hot, cold and severe plastic deformation conditions”, Progress in Materials Science, Vol 60, pp.130-207, March 2014.
[7] N. Nafsin, H. M. M. A. Rashed, “Effects of Copper and Magnesium on Microstructure and Hardness of Al-Cu-Mg Alloys,” International Journal of Engineering and Advanced Technology, Vol 2, pp.533-536, June 2013.
[8] Lina M. Shehadeh , Issam S. Jalham , “The Effect of Adding Different Percentages of Manganese (Mn) and Copper (Cu) on the Mechanical Behavior of Aluminum”, Jordan Journal of Mechanical and Industrial Engineering ,Vol 10, pp.19-26, March 2016.
[9] M.S. Salleh, M.Z. Omar, J. Syarif, “The effects of Mg addition on the microstructure and mechanical properties of thixoformed Al–5%Si–Cu alloys”, Journal of Alloys and Compounds, Vol 621, pp. 121-130, February 2015.
[10] S. W Nam, D.H Lee, “The Effect of Mn on the Mechanical Behavior of AI Alloy”, Metals and Materials, Vol 6, pp.13-16, February 2000.
[11] L.H.Su, C.Lu, G.Y.Deng, K.Tieu, “Vacancy-Type Defects Study on Ultra-Fine Drained Aluminum Processed by Severe Plastic Deformation”, Science of Advanced Materials, Vol 6, pp.1-8, July 2014.
[12] M.Militzer, W.P Sun, J.J.Jonas, “Modelling the Effect of Deformation-Induced vacancies on Segregation and Precipitation”, Act metal.mater ,Vol 42,pp.133-141, January 1994.
[13] J.D.Robson, “Deformation Enhanced Diffusion in Aluminium Alloys”, Metallurgical and Materials Transactions A, Vol 51, pp.5401-5413, August 2020.
[14] C.Wolverton, “Solute–vacancy binding in aluminum”, Acta Materialia, Vol 55, pp.5867-5872, August 2007.
[15] T.Hasegawa, U.F.Kocks, “Thermal Recovery Processes in Deformed Aluminum”, Acta Metallurgica, Vol 27, pp. 1705-1716, March 1979.
[16] T.Kayser, “Characterization of microstructure in aluminum alloys based on electron backscatter diffraction”, Germany: Universitätsbibliothek, Dortmund, 2011.
[17] P.W.Li, H.Z.Li, L.Huang, X.p.Liang, Z.X.Zhu, “Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map”, Tran. Nonferrous Met. Soc. China, Vol 27, pp.1677-1688, January 2017.
[18] J. Zhang, Y. Yi, S. Huang, X. Mao, H. He, J. Tang, W. Guo, F. Dong, “Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation”, Material Science & Engineering, Vol 804,140650, February 2021.
[19] K. Huang, R.E. Log´e, “A review of dynamic recrystallization phenomena in metallic materials”, Material & Design, Vol 111, pp.548–574, December 2016.
[20] S.F. Chen, D.Y. Li, S.H. Zhang, H.N. Han, H.W. Lee, M.G. Lee, “Modelling continuous dynamic recrystallization of aluminum alloys based on the polycrystal plasticity approach”, International Journal of Plasticity, Vol 131, February 2020.
[21] R. Kaibyshev ,S. Malopheyev, “Mechanisms of dynamic recrystallization in aluminum alloys”, Materials Science Forum, Vol 794-796, pp.784-789, June 2014.
[22] R.J.Griffiths, D.Garcia, J.Song, V. K.Vasudevan, M.A.Steiner, W.Cai, H.Z.Yu, “Solid-State Additive Manufacturing of Aluminum and Copper using Additive Friction Stir Deposition: Process-Microstructure Linkages”, Materialia, Vol 15, March 2021.
[23] M. Zeren, “The effect of heat-treatment on aluminum-based piston alloys”, Material Design, Vol 28, pp.2511-2517, 2007.
[24] C. Zhang, Y. Du, S. Liu, Y. Liua, B. Sundman, Thermal conductivity of Al–Cu–Mg–Si alloys: Experimental measurement and CALPHAD modeling, Thermochimica Acta, Vol 635, pp.8-16, April 2016.
[25] D. G. Eskin , “Decomposition of supersaturated solid solutions in Al–Cu–Mg–Si alloys”, Journal of Material Science, Vol 38, pp.279-290, January 2003.
[26] M.Gazizov, C.D.Marioara, J.Friis, S.Wenner, R.Holmestad, “Precipitation behavior in an Al–Cu–Mg–Si alloy during ageing”, Materials Science&Engineering A, Vol 767, September 2019.
[27] Polmear , I.J, Light alloys: from traditional alloys to nanocrystals., Butterworth Heinemann, Vol 4,pp.57-60, December 2005.
[28] N.A.Belov, N.A.Avksent, “Quantitative Analysis of the Al-Cu-Mg-Mn-Si Phase Diagram as Applied to Commercial Alu-minum Alloys of Series 2XXX”, Metal Sci. Heat treatment, Vol 55, pp.358-363, November 2013.
[29] D.Wang, H.Zhang, H.Nagaumi, X.Li, J.Cui, “Microstructural Refinement and αDispersoid Evolution in Direct-Chill Cast Al-Mg-Si-Fe Alloy”, Advanced Engineering Materials, Vol 22, August 2020.
[30] H.Z.Li, Z.X.Zhu, X.P.Liang, P.W.LI, Y.L.QI, F.LV, L. Huang, “Effect of T6-treatments on microstructure and mechanical properties of forged Al−4.4Cu−0.7Mg−0.6Si alloy”, Trans. Nonferrous Met. Soc. China, Vol 27, pp.2539-2547, December 2017.
[31] F. Li, S. Chen, L. Huang, L. He, G. Chen, “Influence of deformation process on microstructure and properties of 2014 aluminum alloy”, Materials Science and Technology, Vol 36, pp.1465-1475, July 2020.
[32] C.Luo, X.Zhou, G.E.Thompson, A.E.Hughes, “Observations of intergranular corrosion in AA2024-T351: The influence of grain stored energy”, Corrosion Science, Vol 61, pp.35-44, August 2012.
[33] X.Zhang, Y.Jiao, Y.Yu, B.Liu, T.Hashimoto, H.Liu, Z.Dong, “Intergranular Corrosion in AA2024-T3 Aluminium Alloy: The Influence of Stored Energy and Prediction”, Corrosion Science, Vol 155, pp.1-12, July 2019.
[34] T.Hashimoto, X.Zhang, X.Zhou, P.Skeldon, S.J.Haigh, G.E.Thompson, “Investigation of dealloying of S phase (Al2CuMg) in AA 2024-T3”, Corrosion Science, Vol 103, pp.157-164, February 2016.
[35] J. Li, J. Dang, “A Summary of Corrosion Properties of Al-Rich Solid Solution and Secondary Phase Particles in Al Alloys”, Metals, Vol 7, pp.84, March 2017.
[36] R. G. Buchheit, R. P. Grant, P. F. Hiava, B. Mckenzie, G.L. Zender, “Local Dissolution Phenomena Associated with S Phase (AI2CuMg) Particles in Aluminum Alloy 2024-T3”, Journal of The Electrochemical Society, Vol 144, pp.2621-2618, August 1997.
[37] J.R.Galvele, S.M.D.Micheli, “Mechanism of Iftergranular Corrosion of Al-Cu Alloys”, Corrosion Science, Vol 10, pp.795-807, 1970.
[38] K.Srinivasa Rao,K.Prasad Rao,“PITTING CORROSION OF HEAT-TREATABLE ALUMINIUM ALLOYS AND WELDS: A REVIEW”, Transactions of the Indian Institute of Metals, Vol 57, pp.593-610, December 2004.
[39] N. Birbill, R.G. Buchheit,” Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys”, Journal of The Electrochemical Society, Vol 152(4), pp.140-150, March 2005.
[40] T.S Shih, H.S Yong, W.N Hsu, “Effects of Cryogenic Forging and Anodization on the Mechanical Properties and Corrosion Resistance of AA6066–T6 Aluminum Alloys”, Metals, Vol 6, March 2016.
[41] X.Zeng, X.G.Fan, H.W.Li, M.Zhan, S.H.Li, “Grain morphology related microstructural developments in bulk”, Material Science & Engineering: A, Vol 760, pp.328-338, July 2019.
[42] A. Medvedev, M. Murashkin, N. Enikeev, E. Medvedev, X. Sauvage, “Influence of
Morphology of Intermetallic Particles on the Microstructure and Properties
Evolution in Severely Deformed Al-Fe Alloys”, Metals, Vol 11, May 2021.
[43] M.Gavgali, B.Aksakal, “Effects of various homogenisation treatments on the hot workability of ingot aluminium alloy AA2014”, Material Science & Engineering: A, Vol 254, pp.189-199, October 1998.
[44] R.Mohammadzadeh, M.Mohammadzadeh, “Effect of grain boundary misorientation
on the apparent diffusivity in nanocrystalline aluminum by atomistic simulation
study”. J. App. Phy. Vol 124, July 2018.
[45] M.A.Tschopp, D.L.Mcdowell, “Asymmetric tilt grain boundary structure and energy
in copper and aluminium”, Philosophical Magazine, Vol 87, pp.3871-3892, Sptember 2007.
[46] X.Zhang, Y.Jiao, Y.Yu, B.Liu, T.Hashimoto, H.Liu, Z.Dong, “Intergranular corrosion in AA2024-T3 aluminium alloy: The influence of stored energy and prediction”, Corrosion Science, Vol 155 ,pp.1-12, July 2019.
[47] Z.Szklarska-Smialowska, “Pitting corrosion of aluminum”, Corrosion Science, Vol 41, pp.1743-1767, August 1999.
[48] 林松達,不同鍛造製程對 AA6061、AA6066 和 AA6082 鋁合金機械性質與抗腐蝕能力的影響,中央大學碩士論文,2019。
[49] 許赫驖,不同鍛造製程對 AA7075 鋁合金機械性質與抗腐蝕能力的影響,中央大學碩士論文,2021。
[50] Y. Kim, R.G. Buchheit, “A characterization of the inhibiting effect of Cu on metastable pitting in dilute Al–Cu solid solution alloys”, Elect.Acta, 52,2437-2446, February 2007.
[51] C.E. Ekuma, N.E. Idenyi, A.E. Umahi, “The Effects of Zinc Additions on the
corrosion susceptibility of Aluminum alloys in various tetraoxosulphate (VI) acid
environments”, J. Appl. Sci. Vol 7, pp.237–241, February 2007.
[52] R. Zhang, S.P. Knight, R.L. Holtz, R. Goswami, C.H.J. Davies, N. Birbilis, “A survey of sensitization in 5xxx series Aluminum alloys”, Corrosion, Vol 72, pp.144–159, August 2016.
[53] Yan, J.; Heckman, N.M.; Velasco, L.; Hodge, A.M. “Improve sensitization and
corrosion resistance of an Al-Mg alloy by optimization of grain boundaries”, Sci. Rep., Vol 6, May 2016. |