參考文獻 |
1. T. Dursun and C. Soutis, “Recent Developments in Advanced Aircraft Aluminum Alloys,” Materials & Design, Vol. 56, pp. 862-871, 2014.
2. R. Pan, Z. Shi, C. M. Davies, C. Li, M. Kaye, and J. Lin, “An Integrated Model to Predict Residual Stress Reduction by Multiple Cold Forging Operations in Extra-large AA7050 T-section Panels,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 232, pp. 1319-1330, 2016.
3. J. Robinson, R. L. Cudd, D. Tanner, and G. Dolan, “Quench Sensitivity and Tensile Property Inhomogeneity in 7010 Forgings,” Journal of Materials Processing Technology, Vol. 119, pp. 261-267, 2001.
4. J. S. Robinson, D. A. Tanner, C. E. Truman, A. M. Paradowska, and R. C. Wimpory, “The Influence of Quench Sensitivity on Residual Stresses in the Aluminium Alloys 7010 and 7075,” Materials Characterization, Vol. 65, pp. 73-85, 2012.
5. S. Zhang, Y. Wu, and H. Gong, “A Modeling of Residual Stress in Stretched Aluminum Alloy Plate,” Journal of Materials Processing Technology, Vol. 212, pp. 2463-2473, 2012.
6. V. Richter-Trummer, D. Koch, A. Witte, J. F. dos Santos, and P. M. S. T. de Castro, “Methodology for Prediction of Distortion of Workpieces Manufactured by High Speed Machining Based on an Accurate Through-the-thickness Residual Stress Determination,” The International Journal of Advanced Manufacturing Technology, Vol. 68, pp. 2271-2281, 2013.
7. O. G. Senatorova, I. F. Mikhailova, A. L. Ivanov, M. M. Mitasov, and V. V. Sidel’nikov, “Low-Distortion Quenching of Aluminum Alloys in Polymer Media,” Metal Science and Heat Treatment, Vol. 57, pp. 669-672, 2016
8. G. S. Sarmiento, C. Bronzini, A. C. Canale, L. C. F. Canale, and G. E. Totten, “Water and Polymer Quenching of Aluminum Alloys: A Review of the Effect of Surface Condition, Water Temperature, and Polymer Quenchant Concentration on the Yield Strength of 7075-T6 Aluminum Plate,” Journal of ASTM International, Vol. 6, pp. 1-18, 2009.
9. L. L. M. Albano, P. M. Kavalco, G. E. Totten, and L. C. F. Canale, “IFHTSE Global 21: Heat Treatment and Surface Engineering in the Twenty-first Century Part 19 - Type I Quenchants for Quenching of Aluminium: A Review,” International Heat Treatment & Surface Engineering, Vol. 6, pp. 146-152, 2012.
10. A. V. Sverdlin, G. E. Totten, and G. M. Websterz, “Quenching Media Based on Polyalkylene Glycol for Heat Treatment of Aluminum Alloys,” Metal Science and Heat Treatment, Vol. 38, pp. 252-254, 1996.
11. G. E. Totten, C. E. Bates, and N. A. Clinton, Handbook of Quenchants and Quenching Technology, ASM International, Metals Park, OH, USA, 1993.
12. D. Mackenzie, “Heat Treating Aluminum for Aerospace Applications,” International Surface Engineering Congress - Proceedings of the 1st Congress, Vol. 5, pp. 617-626, 2003.
13. J. S. Robinson, D. A. Tanner, S. van Petegem, and A. Evans, “Influence of Quenching and Aging on Residual Stress in Al–Zn–Mg–Cu Alloy 7449,” Materials Science and Technology, Vol. 28, pp. 420-430, 2012.
14. P. Ulysse, “Thermo-Mechanical Characterization of Forged Coated Products During Water Quench,” Journal of Materials Processing Technology, Vol. 209, pp. 5584-5592, 2009.
15. P. Ulysse and R. W. Schultz, “The Effect of Coatings on the Thermo-Mechanical Response of Cylindrical Specimens During Quenching,” Journal of Materials Processing Technology, Vol. 204, pp. 39-47, 2008.
16. C. Lu, M. F. Yan, Y. X. Wang, C. S. Zhang, Y. Y. Zong, F. Y. Zhang, and H.Y. Fu, “Effect of the Multiphase Layer Produced on Surface of ZL205A Aluminum Alloy Thin-Wall Barrel on Quenching Deformation,” Surface and Coatings Technology, Vol. 372, pp. 319-326, 2019.
17. Light Metal Age, Arconic Starts Up Advanced Thick Plate Stretcher, https://www.lightmetalage.com/news/industry-news/flat-rolled-sheet/arconic-starts-advanced-thick-plate-stretcher/, accessed on February 22, 2022.
18. M. B. Prime and M. R. Hill, “Residual Stress, Stress Relief, and Inhomogeneity in Aluminum Plate,” Scripta Materialia, Vol. 46, pp. 77-82, 2002.
19. Q. C. Wang, Y. L. Ke, H. Y. Xing, Z. Y. Weng, and F. E. Yang, “Evaluation of Residual Stress Relief of Aluminum Alloy 7050 by Using Crack Compliance Method,” Transactions of Nonferrous Metals Society of China (English Edition), Vol. 13, pp. 1190-1193, 2003.
20. J. S. Robinson, P. J. Tiernan, and J. F. Kelleher, “Effect of Post-Quench Delay on Stress Relieving by Cold Compression for the Aluminium Alloy 7050,” Materials Science and Technology, Vol. 31, pp. 409-417, 2015.
21. R. Dawson and D. G. Moffat, “Vibratory Stress Relief: A Fundamental Study of Its Effectiveness,” Journal of Engineering Materials and Technology, Vol. 102, pp. 169-176, 1980.
22. C. A. Walker, A. J. Waddell, and D. J. Johnston, “Vibratory Stress Relief: an Investigation of the Underlying Processes,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 209, pp. 51-58, 1995.
23. H. Gao, Y. Zhang, Q. Wu, J. Song, and K. Wen, “Fatigue Life of 7075-T651 Aluminium Alloy Treated with Vibratory Stress Relief,” International Journal of Fatigue, Vol. 108, pp. 62-67, 2018.
24. H. Gong, Y. Sun, Y. Liu, Y. Wu, Y. He, X. Sun, and M. Zhang, “Effect of Vibration Stress Relief on the Shape Stability of Aluminum Alloy 7075 Thin-Walled Parts,” Metals, Vol. 9, 2019.
25. L. Zhang, X. Feng, Z. Li, and C. Liu, “FEM Simulation and Experimental Study on the Quenching Residual Stress of Aluminum Alloy 2024,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 227, pp. 954-964, 2013.
26. D. A. Tanner and J. S. Robinson, “Residual Stress Prediction and Determination in 7010 Aluminum Alloy Forgings,” Experimental Mechanics, Vol. 40, pp. 75-82, 2000.
27. D. A. Tanner and J. S. Robinson, “Modelling Stress Reduction Techniques of Cold Compression and Stretching in Wrought Aluminium Alloy Products,” Finite Elements in Analysis and Design, Vol. 39, pp. 369-386, 2003.
28. M. Koç, J. Culp, and T. Altan, “Prediction of Residual Stresses in Quenched Aluminum Blocks and their Reduction through Cold Working Processes,” Journal of Materials Processing Technology, Vol. 174, pp. 342-354, 2006.
29. Y.-N. Li, Y.-A. Zhang, X.-W. Li, Z.-H. Li, G.-J. Wang, L.-B. Jin, S.-H. Huang, and B.-Q. Xiong, “Quenching Residual Stress Distributions in Aluminum Alloy Plates with Different Dimensions,” Rare Metals, Vol. 38, pp. 1051-1061, 2019.
30. K. Zhu, B. Xiong, X. Li, Y. Zhang, Z. Li, Y. Li, K. Wen, and L. Yan, “Finite Element Simulation on Residual Stress During Immersion Quenching and Pre-stretching of Al7055 Thick Plates,” Materials Research Express, Vol. 9, 026525, 2022.
31. H. Gong, Y. X. Wu, Z. P. Yang, and K. Liao, “Analysis of Quenching and Stretching Processes of Aluminum Alloy Thick Plates,” Advanced Materials Research, Vol. 996, pp. 532-537, 2014.
32. ScholarWorks, Comparison of High-Strength Aluminum Alloy 7055-T7751 and Standard Alloy 7075-T7651, https://scholarworks.calstate.edu/concern/theses/rv042z24r, accessed on August 1, 2022.
33. Y. N. Li, Y. A. Zhang, X. W. Li, Z. H. Li, G. J. Wang, H. W. Yan, L. B. Jin, and B. Q. Xiong, “Effects of Heat Transfer Coefficients on Quenching Residual Stresses in 7055 Aluminum Alloy,” Materials Science Forum, Vol. 877, pp. 647-654, 2016.
34. V. S. P. Sudula, “Multilinear Isotropic and Multilinear Kinematic Hardening on AZ31 Magnesium Alloy,” International Journal of Engineering and Advanced Technology, Vol. 10, pp. 259-268, 2021. |