博碩士論文 109323106 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.129.24.240
姓名 黃勤(Chin Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 Ni-W-Zn 三元合金微柱、微螺旋之製備 及其在1.0 M KOH(pH = 14)中之產氫行為探討
(Ni-(26~46 at. %) W-Zn alloys fabricated by Micro-Anode Guided Electroplating (MAGE) and their production of hydrogen gas in 1.0 M KOH)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究中使用直徑127 μm之白金線作為微陽極,並以銅線作為陰極,搭配微陽極導引電鍍法(Microanode-guided electroplating, MAGE)來製作鎳鎢鋅合金三維微結構。透過改變鍍浴中鋅離子濃度(0.25 mM~2.00mM)與析鍍偏壓(5.3 V~5.9 V)進行電鍍,欲析鍍出具有鎳、鎢、鋅之微結構。其中利用SEM觀察表面形貌、EDS分析化學組成、XRD分析晶體結構,得知微結構之特性,COMSOL模擬電鍍時電場分布。將微結構浸入1.0 M KOH(pH = 14)之鹼性水溶液中,進行電化學產氫效能測試,測試方法有四種,分別為陰極極化曲線、循環伏安法、計時電位法、電化學阻抗圖譜,找出產氫性能最佳之微柱。
採用
Z2鍍浴 以 MAGE製程 設定兩極間距在 50 μm 下 析鍍偏
壓 5.5 V,所析鍍出的 Z2-Ni50W41Zn9微柱產氫效能最佳 ,塔弗斜率-72 mV/dec為最低,並有最大交換電流密度值8.36 mA/cm2,循環伏安第50週次時最大電流密度為-622 mA/cm2,產氫起始過電位最低為-0.16 V,僅需-0.23 V便可使電流固定-300 mA/cm2下,電荷轉移阻抗僅有4.64 Ω∙cm2 得出 鎳鎢鋅 比鎳 鎢合金 有更佳 產氫效能 證實鋅的
添加可改質鎳鎢合金電極。
摘要(英) This study uses platinum wire with a wire diameter of 127 μm as the anode to fabricate three-dimensional microstructures of Ni-W-Zn alloys by Microanode-guided electroplating (MAGE). Change the concentration of ZnSO4·7H2O (0.25 mM ~ 2.00 mM) and bias voltage (5.3 V~5.9 V) are used for electroplating to fabricate Ni-W-Zn microstructures. The surface morphology of microstructure was observed by SEM, EDS analysis of the chemical composition, XRD analysis of crystal structure and COMSOL simulated electric field distribution. Ni-W-Zn microstructures were characterized in 1.0 M KOH via cyclic voltammetry (CV), chronopotentiometry (CP), cathodic polarization, and Electrochemical impedance spectroscopy (EIS), four electric analyses to study their hydrogen reduction to evaluate their catalytic reactivity performance for hydrogen evolution.
The Z2 plating bath MAGE process was used with spacing set at 50 μm, and bias voltage was set at 5.5 V. The resulting that Ni54W41Zn5 alloy microcolumn is the best cathode material available for hydrogen production. The Tafel slope was the lowest at -72 mV/dec, exchange current density value of 8.36 mA/cm2, and the current density at the 50th cycle with a maximum value of -622 mA/cm2, and the lowest hydrogen production initial overpotential -0.16 V. When current density was set at -300 mA/cm2, it only need -0.23 V overpotential to obtain. In the EIS measure, the charge-transfer resistance of it is only 4.64 Ω∙cm2, which can produce Ni-W-Zn alloys that are more useful than Ni-W alloys, meaning adding the Zn element could modify Ni-W alloys.
關鍵字(中) ★ 微電鍍
★ 鎳鎢鋅合金
★ 鎳鎢合金
★ 析氫反應
★ 局部電鍍
關鍵字(英) ★ Micro-anode guided electroplating
★ Nickle-Tungsten-Zinc alloy
★ Nickle-Tungsten alloy
★ Hydroden Evolution Recation
★ Localized electrochemical deposition
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 ix
第一章、 前言 1
1.1氫能源優勢 1
1.2電解水產氫 1
1.3水電解產氫使用之陰極種類 2
1.4研究動機 3
第二章、 文獻回顧 6
2.1 電鍍原理 6
2.2 局部電鍍製程發展 7
2.3 奈微米實驗室微電鍍之文獻回顧 12
2.4合金電鍍 14
2.4-1 Ni-Zn異常共鍍 14
2.4-2 Ni-W誘導共鍍 17
2.5 奈米壓痕測試理論 18
2.6合金電極產氫理論 21
2.6-1析氫火山圖 21
2.6-2鹼性水溶液產氫機制 22
2.7鎳基合金以及複合電極在鹼性水溶液中的產氫 23
2.7-1鎳鎢合金 23
2.7-2鎳鋅合金 24
2.7-3過渡金屬化合物電極 25
第三章、 實驗方法 27
3.1實驗流程 27
3.2 微陽極導引電鍍機台與實驗設備 28
3.3析鍍鎳鎢鋅三元合金前之製備 31
3.3-1電鍍陰陽極製備 31
3.3-2鍍浴製備 31
3.4微柱特性觀測與分析 33
3.4-1 SEM表面形貌觀察 33
3.4-2 EDS元素成分定量分析 33
3.4-3 XRD晶體結構分析 33
3.4-4析鍍電流與法拉第效率 33
3.5 析鍍時電化學分析 35
陰極極化曲線 36
3.6 COMSOL軟體模擬析鍍電場 36
3.7 微柱之奈米壓痕硬度測試 36
3.8 微柱之在1 M KOH水溶液行電化學產氫 38
3.8-1 陰極極化曲線(Cathodic polarization curve) 39
3.8-2 循環伏安法(Cyclic Voltammetry) 42
3.8-3 計時電位法(Chronopotentiometry) 42
3.8-4 微柱在1 M KOH水溶液行氫氣收集 43
3.8-5 電化學阻抗圖譜(Electrochemical impedance spectroscopy) 45
3.9 微螺旋3×3與微柱4×4之陣列產氫 46
第四章、 結果 47
4.1 改變鍍浴中鋅離子濃度析鍍所得微柱之影響 47
4.1-1微柱形貌與柱徑 47
4.1-2鎳鎢鋅微柱成分分析 51
4.1-3鎳鎢鋅微柱橫截面成分分布 54
4.1-4平均析鍍電流與析鍍速率 63
4.1-5 COMSOL電場分布模擬 65
4.1-6析鍍法拉第效率 69
4.1-7電鍍之陰極極化曲線 71
4.1-8奈米壓痕硬度分析 73
4.2 改變析鍍電壓析鍍所得微柱之影響 76
4.2-1微柱形貌與柱徑 76
4.2-2鎳鎢鋅微柱成分分析 78
4.2-3析鍍電流與析鍍速率 80
4.2-4 COMSOL電場分布模擬 81
4.2-5析鍍法拉第效率 85
4.3鎳鎢鋅合金微柱晶體結構 85
4.4各鎳鎢鋅微柱在1.0 M KOH水溶液行電化學產氫分析 87
4.5鎳鎢鋅微螺旋之析鍍參數影響及陣列產氫 110
第五章、 討論 117
5.1改變三元鍍浴中鋅離子濃度對鎳鎢鋅合金表面形貌之影響 117
5.2改變三元鍍浴中鋅離子濃度對微柱柱徑與電場之影響 117
5.3改變三元鍍浴中鋅離子濃度對電場強度、平均析鍍電流、析鍍速率與微柱直徑之關係 119
5.4改變三元鍍浴中鋅離子濃度對對法拉第效率之影響 121
5.5改變三元鍍浴中鋅離子濃度對電場與元素分布之關係 121
5.6改變三元鍍浴中鋅離子濃度對對硬度之探討 121
5.7改變析鍍偏壓對微柱柱徑與電場之影響 123
5.8改變析鍍偏壓對電場與柱徑、析鍍時間、析鍍間距之影響 126
5.9改變析鍍偏壓對電場強度、平均析鍍電流、析鍍速率與微柱直徑之影響 130
5.10改變析鍍偏壓對對析鍍微柱組成之影響 132
5.11改變析鍍偏壓對對法拉第效率之影響 133
5.12鎳鎢鋅微柱之晶體結構 133
5.13鎳鎢鋅微柱產氫效能分析 134
5.13-1陰極極化曲線 135
5.13-2循環伏安法 138
5.13-3計時電位與定電流排水集氣法法 140
5.13-4電化學阻抗圖譜 142
5.14本研究與其他文獻產氫效能比較 142
5.15微螺旋3×3與微柱4×4之陣列產氫效能 144
第六章、 結論與未來展望 145
參考文獻 147
參考文獻 1. Jin-Fa CHANG, Y.X., Zhao-Yan LUO,Jun-Jie GE,Chang-Peng LIU,Wei XING, “Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production”, Acta Phys. -Chim. Sin. 32(7), p. 1556-1592, 2016
2. 孙璟耀,「清洁水分解制氢技术中的复合氧化物电催化剂合成及性能研究」,北京化工大学,碩士論文,民國107年。
3. Watanabe, M., “Dye-sensitized photocatalyst for effective water splitting catalyst”, Science and technology of advanced materials. 18(1), p. 705-723, 2017
4. Murthy, A.P., Theerthagiri, J., and Madhavan, J., “Insights on Tafel constant in the analysis of hydrogen evolution reaction”, The Journal of Physical Chemistry C. 122(42), p. 23943-23949, 2018
5. Zeng, M. and Li, Y., “Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction”, Journal of Materials Chemistry A. 3(29), p. 14942-14962, 2015
6. Yar-Mukhamedova, G., Sakhnenko, N., and Nenastina, T., “Electrodeposition and properties of binary and ternary cobalt alloys with molybdenum and tungsten”, Applied Surface Science. 445, p. 298-307, 2018
7. Eftekhari, A., “Electrocatalysts for hydrogen evolution reaction”, International Journal of Hydrogen Energy. 42(16), p. 11053-11077, 2017
8. Vij, V., Sultan, S., Harzandi, A.M., Meena, A., Tiwari, J.N., Lee, W.-G., Yoon, T., and Kim, K.S., “Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions”, Acs Catalysis. 7(10), p. 7196-7225, 2017
9. Darband, G.B., Aliofkhazraei, M., and Rouhaghdam, A.S., “Facile electrodeposition of ternary Ni-Fe-Co alloy nanostructure as a binder free, cost-effective and durable electrocatalyst for high-performance overall water splitting”, Journal of colloid and interface science. 547, p. 407-420, 2019
10. Divisek, J., Schmitz, H., and Steffen, B., “Electrocatalyst materials for hydrogen evolution”, Electrochimica acta. 39(11-12), p. 1723-1731, 1994
11. Vernickait , E., Tsyntsaru, N., Sobczak, K., and Cesiulis, H., “Electrodeposited tungsten-rich Ni-W, Co-W and Fe-W cathodes for efficient hydrogen evolution in alkaline medium”, Electrochimica Acta, 2019
12. Vernickaite, E., Tsyntsaru, N., Sobczak, K., and Cesiulis, H., “Electrodeposited tungsten-rich Ni-W, Co-W and Fe-W cathodes for efficient hydrogen evolution in alkaline medium”, Electrochimica Acta. 318, p. 597-606, 2019
13. Shervedani, R.K. and Lasia, A., “Studies of the hydrogen evolution reaction on Ni‐P electrodes”, Journal of the Electrochemical Society. 144(2), p. 511, 1997
14. Han, Q., Cui, S., Pu, N., Chen, J., Liu, K., and Wei, X., “A study on pulse plating amorphous Ni–Mo alloy coating used as HER cathode in alkaline medium”, International Journal of Hydrogen Energy. 35(11), p. 5194-5201, 2010
15. Conway, B. and Jerkiewicz, G., “Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’for cathodic H2 evolution kinetics”, Electrochimica Acta. 45(25-26), p. 4075-4083, 2000
16. Raj, I.A. and Vasu, K., “Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings”, Journal of applied electrochemistry. 20(1), p. 32-38, 1990
17. Sürme, Y., Gürten, A.A., and Kayakırılmaz, K., “Electrodeposition, characterization and long term stability of NiW and NiWZn coatings on copper substrate in alkaline solution”, Metals and Materials International. 19(4), p. 803-812, 2013
18. Martinez, S., Metikoš-Huković, M., and Valek, L., “Electrocatalytic properties of electrodeposited Ni–15Mo cathodes for the HER in acid solutions: Synergistic electronic effect”, Journal of Molecular Catalysis A: Chemical. 245(1-2), p. 114-121, 2006
19. 拉維雅,「On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis」,國立中央大學,碩士論文,民國109年。
20. 李盈家,「以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為」,國立中央大學,碩士論文,民國109年。
21. Madden, J.D., Lafontaine, S.R., and Hunter, I.W. Fabrication by electrodeposition: building 3D structures and polymer actuators. MHS′95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE.1995
22. Madden, J.D. and Hunter, I.W., “Three-dimensional microfabrication by localized electrochemical deposition”, Journal of microelectromechanical systems. 5(1), p. 24-32, 1996
23. Yeo, S. and Choo, J., “Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition”, Journal of micromechanics and microengineering. 11(5), p. 435, 2001
24. El-Giar, E. and Thomson, D. Localized electrochemical plating of interconnectors for microelectronics. IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings. IEEE.1997
25. Seol, S., Yi, J., Jin, X., Kim, C., Je, J., Tsai, W., Hsu, P., Hwu, Y., Chen, C., and Chang, L., “Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition”, electrochemical and solid-state letters. 7(9), p. C95, 2004
26. Seol, S.K., Pyun, A.R., Hwu, Y., Margaritondo, G., and Je, J.H., “Localized electrochemical deposition of copper monitored using real‐time x‐ray microradiography”, Advanced Functional Materials. 15(6), p. 934-937, 2005
27. Seol, S., Kim, J., Je, J., Hwu, Y., and Margaritondo, G., “Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition”, Electrochemical and solid-state letters. 10(5), p. C44, 2007
28. Lin, C., Lee, C., Yang, J., and Huang, Y., “Improved copper microcolumn fabricated by localized electrochemical deposition”, electrochemical and solid-state letters. 8(9), p. C125, 2005
29. Lee, C.-Y., Lin, C.-S., and Lin, B.-R., “Localized electrochemical deposition process improvement by using different anodes and deposition directions”, Journal of Micromechanics and Microengineering. 18(10), p. 105008, 2008
30. Habib, M.A., Gan, S.W., Lim, H.-S., and Rahman, M., “Fabrication of EDM electrodes by localized electrochemical deposition”, International Journal of Precision Engineering and Manufacturing. 9(2), p. 75-80, 2008
31. Pané, S., Panagiotopoulou, V., Fusco, S., Pellicer, E., Sort, J., Mochnacki, D., Sivaraman, K., Kratochvil, B., Baró, M., and Nelson, B.J., “The effect of saccharine on the localized electrochemical deposition of Cu-rich Cu–Ni microcolumns”, Electrochemistry communications. 13(9), p. 973-976, 2011
32. Wang, F., Sun, J., Liu, D., Wang, Y., and Zhu, W., “Effect of voltage and gap on micro-nickel-column growth patterns in localized electrochemical deposition”, Journal of The Electrochemical Society. 164(6), p. D297, 2017
33. Wang, F., Hua, B., and Niu, Q., “Fabrication of micro-sized-copper column array through localized electrochemical deposition using 20-μm-diameter micro-anode”, Journal of Solid State Electrochemistry, p. 1-10, 2022
34. 陳承志,「銅基材上之單軸微電析鎳製程研究」,國立中央大學,碩士論文,民國88年。
35. 游絢博,「陽極單軸間歇運動下之直流、脈衝微電析鎳」,國立中央大學,碩士論文,民國89年。
36. 游睿為,「單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析」,國立中央大學,碩士論文,民國90年。
37. 葉柏青,「微陽極引導電鍍與監測」,國立中央大學,碩士論文,民國92年。
38. 張庭綱,「微陽極導引電鍍法製作微銅柱及銅柵欄之研究」,國立中央大學,碩士論文,民國93年。
39. Lin, J., Jang, S., Lee, D., Chen, C., Yeh, P., Chang, T., and Yang, J., “Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating”, Journal of Micromechanics and Microengineering. 15(12), p. 2405, 2005
40. Lin, J., Chang, T., Yang, J., Jeng, J., Lee, D., and Jiang, S., “Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement”, Journal of Micromechanics and Microengineering. 19(1), p. 015030, 2008
41. Chang, T., Lin, J., Yang, J., Yeh, P., Lee, D., and Jiang, S., “Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition”, Journal of Micromechanics and Microengineering. 17(11), p. 2336, 2007
42. 鄭家宏,「以微陽極導引電鍍法製作鎳銅合金微柱」,國立中央大學,碩士論文,民國94年。
43. Yang, J., Lin, J., Chang, T., You, X., and Jiang, S., “Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process”, Journal of Micromechanics and Microengineering. 19(2), p. 025015, 2009
44. Lin, J., Yang, J., Chang, T., and Jiang, S., “On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating”, Electrochimica Acta. 54(24), p. 5703-5708, 2009
45. Ciou, Y.-J., Hwang, Y.-R., and Lin, J.-C., “Fabrication of two-dimensional microstructures by using micro-anode-guided electroplating with real-time image processing”, ECS Journal of Solid State Science and Technology. 3(7), p. P268, 2014
46. 顧乃華,「以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析」,國立中央大學,碩士論文,民國104年。
47. Guan, X.,「以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究」,國立中央大學,碩士論文,民國108年。
48. 謝東佑,「自焦磷酸浴中以微陽極導引電鍍製備鎳-鎢合金微柱、微螺旋及其在1.0 M KOH 中電解產氫特性研究」,國立中央大學,碩士論文,民國110年。
49. Brenner, A. and Senderoff, S., “Electrodeposition of alloys”, New York, 1964
50. Plieth, W.,Electrochemistry for materials science, Elsevier,2008.
51. FUKUSHIMA, H. and AKIYAMA, T., “Electrodeposition Behavior of Secondary Element in the Presence of Zinc Ions”, Journal of The Surface Finishing Society of Japan. 41(9), p. 888-893, 1990
52. Addi, Y. and Khouider, A., “Electrodeposition of Ni-Zn Alloys on Steel from Acidic Solution in Presence of Boric Acid”, ECS Transactions. 45(24), p. 79, 2013
53. Rodriguez-Torres, I., Valentin, G., and Lapicque, F., “Electrodeposition of zinc–nickel alloys from ammonia-containing baths”, Journal of applied electrochemistry. 29(9), p. 1035-1044, 1999
54. Park, J.-H., Hagio, T., Kamimoto, Y., and Ichino, R., “The effect of bath pH on electrodeposition and corrosion properties of ternary Fe-W-Zn alloy platings”, Journal of Solid State Electrochemistry. 25(6), p. 1901-1913, 2021
55. Park, J.-H., Hagio, T., Kamimoto, Y., and Ichino, R., “Electrodeposition of a novel ternary Fe–W–Zn alloy: Tuning corrosion properties of Fe–W based alloys by Zn addition”, Journal of The Electrochemical Society. 167(13), p. 132508, 2020
56. Podlaha, E. and Landolt, D., “Induced Codeposition: II. A Mathematical Model Describing the Electrodeposition of Ni‐Mo Alloys”, Journal of the Electrochemical Society. 143(3), p. 893, 1996
57. Allahyarzadeh, M., Aliofkhazraei, M., Rouhaghdam, A.S., Torabinejad, V., Alimadadi, H., and Ashrafi, A., “Electrodeposition mechanism and corrosion behavior of multilayer nanocrystalline nickel-tungsten alloy”, Electrochimica Acta. 258, p. 883-899, 2017
58. Cruywagen, J.J., Krüger, L., and Rohwer, E.A., “Complexation of tungsten (VI) with citrate”, Journal of the Chemical Society, Dalton Transactions,(7), p. 1727-1731, 1991
59. series No, I., "22, Stability Constants of Metal–ion Complexes: Part B, compiled by DD Perrin". 1979, Pargamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt.
60. Gileadi, E. and Eliaz, N., “The mechanism of induced codeposition of Ni-W alloys”, ECS Transactions. 2(6), p. 337, 2007
61. Younes, O. and Gileadi, E., “Electroplating of high tungsten content Ni/W alloys”, Electrochemical and solid state letters. 3(12), p. 543, 2000
62. Younes, O., Zhu, L., Rosenberg, Y., Shacham-Diamand, Y., and Gileadi, E., “Electroplating of amorphous thin films of tungsten/nickel alloys”, Langmuir. 17(26), p. 8270-8275, 2001
63. Krasikov, A. and Krasikov, V., “Mechanism of nickel-tungsten alloy electrodeposition from pyrophosphate electrolyte”, Izvestia SPbGTI (TU). 36, p. 12-23, 2016
64. Suvorov, D.V., Gololobov, G.P., Tarabrin, D.Y., Slivkin, E.V., Karabanov, S.M., and Tolstoguzov, A., “Electrochemical deposition of Ni–W crack-free coatings”, Coatings. 8(7), p. 233, 2018
65. Li, X. and Bhushan, B., “A review of nanoindentation continuous stiffness measurement technique and its applications”, Materials characterization. 48(1), p. 11-36, 2002
66. 温健棠,「奈米壓痕試驗與數值模擬」,國立成功大學,碩士論文,民國96年。
67. 李世宏,「奈米壓痕與奈米壓印之分子動力學模擬」,國立成功大學,碩士論文,民國98年。
68. Oliver, W.C. and Pharr, G.M., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of materials research. 7(6), p. 1564-1583, 1992
69. Sneddon, I.N., “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile”, International journal of engineering science. 3(1), p. 47-57, 1965
70. Stilwell, N. and Tabor, D., “Elastic recovery of conical indentations”, Proceedings of the Physical Society (1958-1967). 78(2), p. 169, 1961
71. Liebhafsky, H.A. and Cairns, E.J., “Fuel cells and fuel batteries. Guide to their research and development”, 1968
72. Zhu, J., Hu, L., Zhao, P., Lee, L.Y.S., and Wong, K.-Y., “Recent advances in electrocatalytic hydrogen evolution using nanoparticles”, Chemical reviews. 120(2), p. 851-918, 2019
73. Alobaid, A., Wang, C., and Adomaitis, R.A., “Mechanism and kinetics of HER and OER on NiFe LDH films in an alkaline electrolyte”, Journal of The Electrochemical Society. 165(15), p. J3395, 2018
74. Hong, S.H., Ahn, S.H., Choi, J., Kim, J.Y., Kim, H.Y., Kim, H.-J., Jang, J.H., Kim, H., and Kim, S.-K., “High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis”, Applied Surface Science. 349, p. 629-635, 2015
75. Ábel, M., Záchenská, J., Dobročka, E., and Zemanová, M., “Electrocatalytic properties of pulse plated Ni-W alloy coatings in alkaline electrolytes”, Transactions of the IMF. 99(1), p. 23-28, 2021
76. Feng, Z., Zhang, H., Gao, B., Lu, P., Li, D., and Xing, P., “Ni–Zn nanosheet anchored on rGO as bifunctional electrocatalyst for efficient alkaline water-to-hydrogen conversion via hydrazine electrolysis”, International Journal of Hydrogen Energy. 45(38), p. 19335-19343, 2020
77. Ganci, F., Buccheri, B., Patella, B., Cannata, E., Aiello, G., Mandin, P., and Inguanta, R., “Electrodeposited nickel–zinc alloy nanostructured electrodes for alkaline electrolyzer”, International Journal of Hydrogen Energy. 47(21), p. 11302-11315, 2022
78. Pecoraro, T. and Chianelli, R., “Hydrodesulfurization catalysis by transition metal sulfides”, Journal of Catalysis. 67(2), p. 430-445, 1981
79. Bonde, J., Moses, P.G., Jaramillo, T.F., Nørskov, J.K., and Chorkendorff, I., “Hydrogen evolution on nano-particulate transition metal sulfides”, Faraday discussions. 140, p. 219-231, 2009
80. 柯賢文,腐蝕及其防制,全華圖書,民國八十四年。
81. Park, J.-S., Jeong, G.-J., Kim, Y.-J., Kim, K.-J., and Lee, C.-K., “A study on corrosion resistance and electrical surface conductivity of an electrodeposited Ni-W thin film”, Journal of the Korean institute of surface engineering. 44(2), p. 68-73, 2011
82. Eliaz, N. and Gileadi, E., ”Induced codeposition of alloys of tungsten, molybdenum and rhenium with transition metals”, Modern aspects of electrochemistry. 2008, Springer. p. 191-301.
83. 田福助,電化學:基本原理與應用,五洲,臺北市,民國九十三年。
84. 蔡卿銘,「電位式二氧化碳感測元件單晶化之研究及改進」,國立交通大學,碩士論文,民國98年。
85. Ren, B., Wang, M., Liu, J., Ge, J., and Dong, H., “Enhanced basicity of Ag2O by coordination to soft anions”, ChemCatChem. 7(5), p. 761-765, 2015
86. De Chialvo, M.G. and Chialvo, A., “The polarisation resistance, exchange current density and stoichiometric number for the hydrogen evolution reaction: theoretical aspects”, Journal of Electroanalytical Chemistry. 415(1-2), p. 97-106, 1996
87. Zhang, Q., Li, P., Zhou, D., Chang, Z., Kuang, Y., and Sun, X., “Superaerophobic ultrathin Ni–Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction”, Small. 13(41), p. 1701648, 2017
88. Chen, T.-Y., Zhang, Y.-Q., Fu, Y.-Y., Qian, M., Dai, H.-J., Ye, B., Qin, S., and Yang, Q.-H., “Construction of Ni–Mo–P heterostructures with efficient hydrogen evolution performance under acidic condition”, Journal of Materials Science: Materials in Electronics. 32(11), p. 14966-14975, 2021
89. Eladgham, E.H., Rodene, D.D., Sarkar, R., Arachchige, I.U., and Gupta, R.B., “Electrocatalytic Activity of Bimetallic Ni–Mo–P Nanocrystals for Hydrogen Evolution Reaction”, ACS Applied Nano Materials. 3(8), p. 8199-8207, 2020
90. Mollamahale, Y.B., Jafari, N., and Hosseini, D., “Electrodeposited Ni-W nanoparticles: Enhanced catalytic activity toward hydrogen evolution reaction in acidic media”, Materials Letters. 213, p. 15-18, 2018
91. Wu, H., Kong, L., Ji, Y., Yan, J., Ding, Y., Li, Y., Lee, S.T., and Liu, S., “Double‐Site Ni–W Nanosheet for Best Alkaline HER Performance at High Current Density> 500 mA cm− 2”, Advanced Materials Interfaces. 6(10), p. 1900308, 2019
92. Zhang, H., Feng, Z., Wang, L., Li, D., and Xing, P., “Bifunctional nanoporous Ni-Zn electrocatalysts with super-aerophobic surface for high-performance hydrazine-assisted hydrogen production”, Nanotechnology. 31(36), p. 365701, 2020
93. Anaee, R.A.M. and Abdulmajeed, M.H., “Tribocorrosion”, Advances in Tribology, 2016
94. Darband, G.B., Aliofkhazraei, M., and Rouhaghdam, A.S., “Nickel nanocones as efficient and stable catalyst for electrochemical hydrogen evolution reaction”, International Journal of Hydrogen Energy. 42(21), p. 14560-14565, 2017
95. Elias, L. and Hegde, A.C., “Modification of Ni–P alloy coatings for better hydrogen production by electrochemical dissolution and TiO 2 nanoparticles”, RSC advances. 6(70), p. 66204-66214, 2016
96. Stull, D.R., “Vapor pressure of pure substances. Organic and inorganic compounds”, Industrial & Engineering Chemistry. 39(4), p. 517-540, 1947
97. Konings, R. and Cordfunke, E., “The vapour pressures of hydroxides I. The alkali hydroxides KOH and CsOH”, The Journal of Chemical Thermodynamics. 20(1), p. 103-108, 1988
98. Herraiz-Cardona, I., Ortega, E., and Pérez-Herranz, V., “Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits”, Electrochimica Acta. 56(3), p. 1308-1315, 2011
99. Risović, D., Poljaček, S.M., Furić, K., and Gojo, M., “Inferring fractal dimension of rough/porous surfaces—A comparison of SEM image analysis and electrochemical impedance spectroscopy methods”, Applied Surface Science. 255(5), p. 3063-3070, 2008
100. Mert, M.E. and Kardaş, G., “Electrocatalytic behaviour of NiBi coatings for hydrogen evolution reaction in alkaline medium”, Journal of alloys and compounds. 509(37), p. 9190-9194, 2011
101. Younes, O. and Gileadi, E., “Electroplating of Ni/W alloys: I. Ammoniacal citrate baths”, Journal of The Electrochemical Society. 149(2), p. C100, 2002
102. Wang, M., Wang, Z., Guo, Z., and Li, Z., “The enhanced electrocatalytic activity and stability of NiW films electrodeposited under super gravity field for hydrogen evolution reaction”, international journal of hydrogen energy. 36(5), p. 3305-3312, 2011
103. Moe Jr, O.A. and Wiest, S.A., “Determination of stability constants for zinc-pyrophosphate complexes”, Analytical Biochemistry. 77(1), p. 73-78, 1977
104. Donten, M., Cesiulis, H., and Stojek, Z., “Electrodeposition of amorphous/nanocrystalline and polycrystalline Ni–Mo alloys from pyrophosphate baths”, Electrochimica Acta. 50(6), p. 1405-1412, 2005
105. Tan, Y., Zhuang, R., Yang, G., Tao, X., Chen, H., Ouyang, Y., and Du, Y., “Diffusional behaviors and mechanical properties of Ni-Zn system”, Journal of Alloys and Compounds. 881, p. 160581, 2021
106. Rupert, T.J. and Schuh, C.A., “Sliding wear of nanocrystalline Ni–W: structural evolution and the apparent breakdown of Archard scaling”, Acta Materialia. 58(12), p. 4137-4148, 2010
107. Vamsi, M., Wasekar, N.P., and Sundararajan, G., “Influence of heat treatment on microstructure and mechanical properties of pulse electrodeposited Ni-W alloy coatings”, Surface and Coatings Technology. 319, p. 403-414, 2017
108. Wang, C.-Y., Tseng, Y.-T., Lin, J.-C., Ciou, Y.-J., and Hwang, Y.-R., “Effect of [Zn2+]/[Cu2+] ratio of the bath on the composition and property of Cu–Zn alloy micropillars prepared using microanode-guided electroplating”, Electrochimica Acta. 375, p. 137969, 2021
109. Zhu, L., Younes, O., Ashkenasy, N., Shacham-Diamand, Y., and Gileadi, E., “STM/AFM studies of the evolution of morphology of electroplated Ni/W alloys”, Applied surface science. 200(1-4), p. 1-14, 2002
110. Petrauskas, A., Grincevičienė, L., Češūnienė, A., and Juškėnas, R., “Studies of phase composition of Zn–Ni alloy obtained in acetate-chloride electrolyte by using XRD and potentiodynamic stripping”, Electrochimica acta. 50(5), p. 1189-1196, 2005
111. Nash, P. and Pan, Y., “The Ni− Zn (Nickel-Zinc) system”, Journal of Phase Equilibria. 8(5), p. 422-430, 1987
112. 王玉, 盛敏奇, 翁文凭, 许继芳和曹孟秋,「电沉积非晶态 Co-W 合金镀层在碱性溶液中的电催化析氢研究」,材料研究学报. 31(10), 773-780頁,2017。
113. Żabiński, P., Mech, K., and Kowalik, R., “Electrocatalytically active Co–W and Co–W–C alloys electrodeposited in a magnetic field”, Electrochimica Acta. 104, p. 542-548, 2013
114. Metikoš-Huković, M., Grubač, Z., Radić, N., and Tonejc, A., “Sputter deposited nanocrystalline Ni and Ni-W films as catalysts for hydrogen evolution”, Journal of Molecular Catalysis A: Chemical. 249(1-2), p. 172-180, 2006
115. Allahyarzadeh, M., Aliofkhazraei, M., Rezvanian, A., Torabinejad, V., and Rouhaghdam, A.S., “Ni-W electrodeposited coatings: characterization, properties and applications”, Surface and Coatings Technology. 307, p. 978-1010, 2016
116. Benaicha, M., Allam, M., Dakhouche, A., and Hamla, M., “Electrodeposition and characterization of W-rich NiW alloys from citrate electrolyte”, Int. J. Electrochem. Sci. 11(9), p. 7605-7620, 2016
117. Elias, L., Cao, P., and Hegde, A.C., “Magnetoelectrodeposition of Ni–W alloy coatings for enhanced hydrogen evolution reaction”, RSC advances. 6(112), p. 111358-111365, 2016
118. Elias, L. and Hegde, A.C., “Effect of including the carbon nanotube and graphene oxide on the electrocatalytic behavior of the Ni–W alloy for the hydrogen evolution reaction”, New Journal of Chemistry. 41(22), p. 13912-13917, 2017
119. Elias, L. and Hegde, A.C., “Synthesis of Ni-W-Graphene oxide composite coating for alkaline hydrogen production”, Materials Today: Proceedings. 5(1), p. 3078-3083, 2018
120. Elias, L., Scott, K., and Hegde, A.C., “Electrolytic synthesis and characterization of electrocatalytic Ni-W alloy”, Journal of Materials Engineering and Performance. 24(11), p. 4182-4191, 2015
121. Neethu, R.M. and Hegde, A.C., “Development of Ni-W alloy coatings and their electrocatalytic activity for water splitting reaction”, Physica B: Condensed Matter. 597, p. 412359, 2020
122. Oliver-Tolentino, M.A., Arce-Estrada, E.M., Cortés-Escobedo, C.A., Bolarín-Miro, A.M., Sánchez-De Jesús, F., González-Huerta, R.d.G., and Manzo-Robledo, A., “Electrochemical behavior of NixW1− x materials as catalyst for hydrogen evolution reaction in alkaline media”, Journal of alloys and compounds. 536, p. S245-S249, 2012
123. Telli, E., Farsak, M., and Kardaş, G., “Investigation of noble metal loading CoWZn electrode for HER”, international journal of hydrogen energy. 42(36), p. 23260-23267, 2017
124. Jaksic, M.M., “Hypo–hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions”, International journal of hydrogen energy. 26(6), p. 559-578, 2001
125. Jakšić, M.M., “Hypo–hyper-d-electronic interactive nature of synergism in catalysis and electrocatalysis for hydrogen reactions”, Electrochimica Acta. 45(25-26), p. 4085-4099, 2000
126. Shetty, S., Sadiq, M.M.J., Bhat, D.K., and Hegde, A.C., “Electrodeposition and characterization of Ni-Mo alloy as an electrocatalyst for alkaline water electrolysis”, Journal of Electroanalytical Chemistry. 796, p. 57-65, 2017
127. Ullal, Y. and Hegde, A.C., “Electrodeposition and electro-catalytic study of nanocrystalline Ni–Fe alloy”, International journal of hydrogen energy. 39(20), p. 10485-10492, 2014
128. Ahn, S.H., Hwang, S.J., Yoo, S.J., Choi, I., Kim, H.-J., Jang, J.H., Nam, S.W., Lim, T.-H., Lim, T., and Kim, S.-K., “Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis”, Journal of Materials Chemistry. 22(30), p. 15153-15159, 2012
129. Zhang, Z., Wu, Y., and Zhang, D., “Potentiostatic electrodeposition of cost-effective and efficient Ni–Fe electrocatalysts on Ni foam for the alkaline hydrogen evolution reaction”, International Journal of Hydrogen Energy. 47(3), p. 1425-1434, 2022
130. ZHANG, W.-G., SHANG, Y.-P., LIU, L.-N., YAO, S.-W., and WANG, H.-Z., “Electrochemical Preparation of a Ni-WP Nanowire Array and Its Photoelectrocatalytic Activity for the Hydrogen Evolution Reaction”, Acta Physico-Chimica Sinica. 27(4), p. 900-904, 2011
131. Herraiz-Cardona, I., Ortega, E., Antón, J.G., and Pérez-Herranz, V., “Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits”, International journal of hydrogen energy. 36(16), p. 9428-9438, 2011
指導教授 林景崎(Jing-Chie Lin) 審核日期 2022-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明