參考文獻 |
1. Jin-Fa CHANG, Y.X., Zhao-Yan LUO,Jun-Jie GE,Chang-Peng LIU,Wei XING, “Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production”, Acta Phys. -Chim. Sin. 32(7), p. 1556-1592, 2016
2. 孙璟耀,「清洁水分解制氢技术中的复合氧化物电催化剂合成及性能研究」,北京化工大学,碩士論文,民國107年。
3. Watanabe, M., “Dye-sensitized photocatalyst for effective water splitting catalyst”, Science and technology of advanced materials. 18(1), p. 705-723, 2017
4. Murthy, A.P., Theerthagiri, J., and Madhavan, J., “Insights on Tafel constant in the analysis of hydrogen evolution reaction”, The Journal of Physical Chemistry C. 122(42), p. 23943-23949, 2018
5. Zeng, M. and Li, Y., “Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction”, Journal of Materials Chemistry A. 3(29), p. 14942-14962, 2015
6. Yar-Mukhamedova, G., Sakhnenko, N., and Nenastina, T., “Electrodeposition and properties of binary and ternary cobalt alloys with molybdenum and tungsten”, Applied Surface Science. 445, p. 298-307, 2018
7. Eftekhari, A., “Electrocatalysts for hydrogen evolution reaction”, International Journal of Hydrogen Energy. 42(16), p. 11053-11077, 2017
8. Vij, V., Sultan, S., Harzandi, A.M., Meena, A., Tiwari, J.N., Lee, W.-G., Yoon, T., and Kim, K.S., “Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions”, Acs Catalysis. 7(10), p. 7196-7225, 2017
9. Darband, G.B., Aliofkhazraei, M., and Rouhaghdam, A.S., “Facile electrodeposition of ternary Ni-Fe-Co alloy nanostructure as a binder free, cost-effective and durable electrocatalyst for high-performance overall water splitting”, Journal of colloid and interface science. 547, p. 407-420, 2019
10. Divisek, J., Schmitz, H., and Steffen, B., “Electrocatalyst materials for hydrogen evolution”, Electrochimica acta. 39(11-12), p. 1723-1731, 1994
11. Vernickait , E., Tsyntsaru, N., Sobczak, K., and Cesiulis, H., “Electrodeposited tungsten-rich Ni-W, Co-W and Fe-W cathodes for efficient hydrogen evolution in alkaline medium”, Electrochimica Acta, 2019
12. Vernickaite, E., Tsyntsaru, N., Sobczak, K., and Cesiulis, H., “Electrodeposited tungsten-rich Ni-W, Co-W and Fe-W cathodes for efficient hydrogen evolution in alkaline medium”, Electrochimica Acta. 318, p. 597-606, 2019
13. Shervedani, R.K. and Lasia, A., “Studies of the hydrogen evolution reaction on Ni‐P electrodes”, Journal of the Electrochemical Society. 144(2), p. 511, 1997
14. Han, Q., Cui, S., Pu, N., Chen, J., Liu, K., and Wei, X., “A study on pulse plating amorphous Ni–Mo alloy coating used as HER cathode in alkaline medium”, International Journal of Hydrogen Energy. 35(11), p. 5194-5201, 2010
15. Conway, B. and Jerkiewicz, G., “Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’for cathodic H2 evolution kinetics”, Electrochimica Acta. 45(25-26), p. 4075-4083, 2000
16. Raj, I.A. and Vasu, K., “Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings”, Journal of applied electrochemistry. 20(1), p. 32-38, 1990
17. Sürme, Y., Gürten, A.A., and Kayakırılmaz, K., “Electrodeposition, characterization and long term stability of NiW and NiWZn coatings on copper substrate in alkaline solution”, Metals and Materials International. 19(4), p. 803-812, 2013
18. Martinez, S., Metikoš-Huković, M., and Valek, L., “Electrocatalytic properties of electrodeposited Ni–15Mo cathodes for the HER in acid solutions: Synergistic electronic effect”, Journal of Molecular Catalysis A: Chemical. 245(1-2), p. 114-121, 2006
19. 拉維雅,「On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis」,國立中央大學,碩士論文,民國109年。
20. 李盈家,「以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為」,國立中央大學,碩士論文,民國109年。
21. Madden, J.D., Lafontaine, S.R., and Hunter, I.W. Fabrication by electrodeposition: building 3D structures and polymer actuators. MHS′95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE.1995
22. Madden, J.D. and Hunter, I.W., “Three-dimensional microfabrication by localized electrochemical deposition”, Journal of microelectromechanical systems. 5(1), p. 24-32, 1996
23. Yeo, S. and Choo, J., “Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition”, Journal of micromechanics and microengineering. 11(5), p. 435, 2001
24. El-Giar, E. and Thomson, D. Localized electrochemical plating of interconnectors for microelectronics. IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings. IEEE.1997
25. Seol, S., Yi, J., Jin, X., Kim, C., Je, J., Tsai, W., Hsu, P., Hwu, Y., Chen, C., and Chang, L., “Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition”, electrochemical and solid-state letters. 7(9), p. C95, 2004
26. Seol, S.K., Pyun, A.R., Hwu, Y., Margaritondo, G., and Je, J.H., “Localized electrochemical deposition of copper monitored using real‐time x‐ray microradiography”, Advanced Functional Materials. 15(6), p. 934-937, 2005
27. Seol, S., Kim, J., Je, J., Hwu, Y., and Margaritondo, G., “Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition”, Electrochemical and solid-state letters. 10(5), p. C44, 2007
28. Lin, C., Lee, C., Yang, J., and Huang, Y., “Improved copper microcolumn fabricated by localized electrochemical deposition”, electrochemical and solid-state letters. 8(9), p. C125, 2005
29. Lee, C.-Y., Lin, C.-S., and Lin, B.-R., “Localized electrochemical deposition process improvement by using different anodes and deposition directions”, Journal of Micromechanics and Microengineering. 18(10), p. 105008, 2008
30. Habib, M.A., Gan, S.W., Lim, H.-S., and Rahman, M., “Fabrication of EDM electrodes by localized electrochemical deposition”, International Journal of Precision Engineering and Manufacturing. 9(2), p. 75-80, 2008
31. Pané, S., Panagiotopoulou, V., Fusco, S., Pellicer, E., Sort, J., Mochnacki, D., Sivaraman, K., Kratochvil, B., Baró, M., and Nelson, B.J., “The effect of saccharine on the localized electrochemical deposition of Cu-rich Cu–Ni microcolumns”, Electrochemistry communications. 13(9), p. 973-976, 2011
32. Wang, F., Sun, J., Liu, D., Wang, Y., and Zhu, W., “Effect of voltage and gap on micro-nickel-column growth patterns in localized electrochemical deposition”, Journal of The Electrochemical Society. 164(6), p. D297, 2017
33. Wang, F., Hua, B., and Niu, Q., “Fabrication of micro-sized-copper column array through localized electrochemical deposition using 20-μm-diameter micro-anode”, Journal of Solid State Electrochemistry, p. 1-10, 2022
34. 陳承志,「銅基材上之單軸微電析鎳製程研究」,國立中央大學,碩士論文,民國88年。
35. 游絢博,「陽極單軸間歇運動下之直流、脈衝微電析鎳」,國立中央大學,碩士論文,民國89年。
36. 游睿為,「單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析」,國立中央大學,碩士論文,民國90年。
37. 葉柏青,「微陽極引導電鍍與監測」,國立中央大學,碩士論文,民國92年。
38. 張庭綱,「微陽極導引電鍍法製作微銅柱及銅柵欄之研究」,國立中央大學,碩士論文,民國93年。
39. Lin, J., Jang, S., Lee, D., Chen, C., Yeh, P., Chang, T., and Yang, J., “Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating”, Journal of Micromechanics and Microengineering. 15(12), p. 2405, 2005
40. Lin, J., Chang, T., Yang, J., Jeng, J., Lee, D., and Jiang, S., “Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement”, Journal of Micromechanics and Microengineering. 19(1), p. 015030, 2008
41. Chang, T., Lin, J., Yang, J., Yeh, P., Lee, D., and Jiang, S., “Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition”, Journal of Micromechanics and Microengineering. 17(11), p. 2336, 2007
42. 鄭家宏,「以微陽極導引電鍍法製作鎳銅合金微柱」,國立中央大學,碩士論文,民國94年。
43. Yang, J., Lin, J., Chang, T., You, X., and Jiang, S., “Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process”, Journal of Micromechanics and Microengineering. 19(2), p. 025015, 2009
44. Lin, J., Yang, J., Chang, T., and Jiang, S., “On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating”, Electrochimica Acta. 54(24), p. 5703-5708, 2009
45. Ciou, Y.-J., Hwang, Y.-R., and Lin, J.-C., “Fabrication of two-dimensional microstructures by using micro-anode-guided electroplating with real-time image processing”, ECS Journal of Solid State Science and Technology. 3(7), p. P268, 2014
46. 顧乃華,「以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析」,國立中央大學,碩士論文,民國104年。
47. Guan, X.,「以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究」,國立中央大學,碩士論文,民國108年。
48. 謝東佑,「自焦磷酸浴中以微陽極導引電鍍製備鎳-鎢合金微柱、微螺旋及其在1.0 M KOH 中電解產氫特性研究」,國立中央大學,碩士論文,民國110年。
49. Brenner, A. and Senderoff, S., “Electrodeposition of alloys”, New York, 1964
50. Plieth, W.,Electrochemistry for materials science, Elsevier,2008.
51. FUKUSHIMA, H. and AKIYAMA, T., “Electrodeposition Behavior of Secondary Element in the Presence of Zinc Ions”, Journal of The Surface Finishing Society of Japan. 41(9), p. 888-893, 1990
52. Addi, Y. and Khouider, A., “Electrodeposition of Ni-Zn Alloys on Steel from Acidic Solution in Presence of Boric Acid”, ECS Transactions. 45(24), p. 79, 2013
53. Rodriguez-Torres, I., Valentin, G., and Lapicque, F., “Electrodeposition of zinc–nickel alloys from ammonia-containing baths”, Journal of applied electrochemistry. 29(9), p. 1035-1044, 1999
54. Park, J.-H., Hagio, T., Kamimoto, Y., and Ichino, R., “The effect of bath pH on electrodeposition and corrosion properties of ternary Fe-W-Zn alloy platings”, Journal of Solid State Electrochemistry. 25(6), p. 1901-1913, 2021
55. Park, J.-H., Hagio, T., Kamimoto, Y., and Ichino, R., “Electrodeposition of a novel ternary Fe–W–Zn alloy: Tuning corrosion properties of Fe–W based alloys by Zn addition”, Journal of The Electrochemical Society. 167(13), p. 132508, 2020
56. Podlaha, E. and Landolt, D., “Induced Codeposition: II. A Mathematical Model Describing the Electrodeposition of Ni‐Mo Alloys”, Journal of the Electrochemical Society. 143(3), p. 893, 1996
57. Allahyarzadeh, M., Aliofkhazraei, M., Rouhaghdam, A.S., Torabinejad, V., Alimadadi, H., and Ashrafi, A., “Electrodeposition mechanism and corrosion behavior of multilayer nanocrystalline nickel-tungsten alloy”, Electrochimica Acta. 258, p. 883-899, 2017
58. Cruywagen, J.J., Krüger, L., and Rohwer, E.A., “Complexation of tungsten (VI) with citrate”, Journal of the Chemical Society, Dalton Transactions,(7), p. 1727-1731, 1991
59. series No, I., "22, Stability Constants of Metal–ion Complexes: Part B, compiled by DD Perrin". 1979, Pargamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt.
60. Gileadi, E. and Eliaz, N., “The mechanism of induced codeposition of Ni-W alloys”, ECS Transactions. 2(6), p. 337, 2007
61. Younes, O. and Gileadi, E., “Electroplating of high tungsten content Ni/W alloys”, Electrochemical and solid state letters. 3(12), p. 543, 2000
62. Younes, O., Zhu, L., Rosenberg, Y., Shacham-Diamand, Y., and Gileadi, E., “Electroplating of amorphous thin films of tungsten/nickel alloys”, Langmuir. 17(26), p. 8270-8275, 2001
63. Krasikov, A. and Krasikov, V., “Mechanism of nickel-tungsten alloy electrodeposition from pyrophosphate electrolyte”, Izvestia SPbGTI (TU). 36, p. 12-23, 2016
64. Suvorov, D.V., Gololobov, G.P., Tarabrin, D.Y., Slivkin, E.V., Karabanov, S.M., and Tolstoguzov, A., “Electrochemical deposition of Ni–W crack-free coatings”, Coatings. 8(7), p. 233, 2018
65. Li, X. and Bhushan, B., “A review of nanoindentation continuous stiffness measurement technique and its applications”, Materials characterization. 48(1), p. 11-36, 2002
66. 温健棠,「奈米壓痕試驗與數值模擬」,國立成功大學,碩士論文,民國96年。
67. 李世宏,「奈米壓痕與奈米壓印之分子動力學模擬」,國立成功大學,碩士論文,民國98年。
68. Oliver, W.C. and Pharr, G.M., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of materials research. 7(6), p. 1564-1583, 1992
69. Sneddon, I.N., “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile”, International journal of engineering science. 3(1), p. 47-57, 1965
70. Stilwell, N. and Tabor, D., “Elastic recovery of conical indentations”, Proceedings of the Physical Society (1958-1967). 78(2), p. 169, 1961
71. Liebhafsky, H.A. and Cairns, E.J., “Fuel cells and fuel batteries. Guide to their research and development”, 1968
72. Zhu, J., Hu, L., Zhao, P., Lee, L.Y.S., and Wong, K.-Y., “Recent advances in electrocatalytic hydrogen evolution using nanoparticles”, Chemical reviews. 120(2), p. 851-918, 2019
73. Alobaid, A., Wang, C., and Adomaitis, R.A., “Mechanism and kinetics of HER and OER on NiFe LDH films in an alkaline electrolyte”, Journal of The Electrochemical Society. 165(15), p. J3395, 2018
74. Hong, S.H., Ahn, S.H., Choi, J., Kim, J.Y., Kim, H.Y., Kim, H.-J., Jang, J.H., Kim, H., and Kim, S.-K., “High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis”, Applied Surface Science. 349, p. 629-635, 2015
75. Ábel, M., Záchenská, J., Dobročka, E., and Zemanová, M., “Electrocatalytic properties of pulse plated Ni-W alloy coatings in alkaline electrolytes”, Transactions of the IMF. 99(1), p. 23-28, 2021
76. Feng, Z., Zhang, H., Gao, B., Lu, P., Li, D., and Xing, P., “Ni–Zn nanosheet anchored on rGO as bifunctional electrocatalyst for efficient alkaline water-to-hydrogen conversion via hydrazine electrolysis”, International Journal of Hydrogen Energy. 45(38), p. 19335-19343, 2020
77. Ganci, F., Buccheri, B., Patella, B., Cannata, E., Aiello, G., Mandin, P., and Inguanta, R., “Electrodeposited nickel–zinc alloy nanostructured electrodes for alkaline electrolyzer”, International Journal of Hydrogen Energy. 47(21), p. 11302-11315, 2022
78. Pecoraro, T. and Chianelli, R., “Hydrodesulfurization catalysis by transition metal sulfides”, Journal of Catalysis. 67(2), p. 430-445, 1981
79. Bonde, J., Moses, P.G., Jaramillo, T.F., Nørskov, J.K., and Chorkendorff, I., “Hydrogen evolution on nano-particulate transition metal sulfides”, Faraday discussions. 140, p. 219-231, 2009
80. 柯賢文,腐蝕及其防制,全華圖書,民國八十四年。
81. Park, J.-S., Jeong, G.-J., Kim, Y.-J., Kim, K.-J., and Lee, C.-K., “A study on corrosion resistance and electrical surface conductivity of an electrodeposited Ni-W thin film”, Journal of the Korean institute of surface engineering. 44(2), p. 68-73, 2011
82. Eliaz, N. and Gileadi, E., ”Induced codeposition of alloys of tungsten, molybdenum and rhenium with transition metals”, Modern aspects of electrochemistry. 2008, Springer. p. 191-301.
83. 田福助,電化學:基本原理與應用,五洲,臺北市,民國九十三年。
84. 蔡卿銘,「電位式二氧化碳感測元件單晶化之研究及改進」,國立交通大學,碩士論文,民國98年。
85. Ren, B., Wang, M., Liu, J., Ge, J., and Dong, H., “Enhanced basicity of Ag2O by coordination to soft anions”, ChemCatChem. 7(5), p. 761-765, 2015
86. De Chialvo, M.G. and Chialvo, A., “The polarisation resistance, exchange current density and stoichiometric number for the hydrogen evolution reaction: theoretical aspects”, Journal of Electroanalytical Chemistry. 415(1-2), p. 97-106, 1996
87. Zhang, Q., Li, P., Zhou, D., Chang, Z., Kuang, Y., and Sun, X., “Superaerophobic ultrathin Ni–Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction”, Small. 13(41), p. 1701648, 2017
88. Chen, T.-Y., Zhang, Y.-Q., Fu, Y.-Y., Qian, M., Dai, H.-J., Ye, B., Qin, S., and Yang, Q.-H., “Construction of Ni–Mo–P heterostructures with efficient hydrogen evolution performance under acidic condition”, Journal of Materials Science: Materials in Electronics. 32(11), p. 14966-14975, 2021
89. Eladgham, E.H., Rodene, D.D., Sarkar, R., Arachchige, I.U., and Gupta, R.B., “Electrocatalytic Activity of Bimetallic Ni–Mo–P Nanocrystals for Hydrogen Evolution Reaction”, ACS Applied Nano Materials. 3(8), p. 8199-8207, 2020
90. Mollamahale, Y.B., Jafari, N., and Hosseini, D., “Electrodeposited Ni-W nanoparticles: Enhanced catalytic activity toward hydrogen evolution reaction in acidic media”, Materials Letters. 213, p. 15-18, 2018
91. Wu, H., Kong, L., Ji, Y., Yan, J., Ding, Y., Li, Y., Lee, S.T., and Liu, S., “Double‐Site Ni–W Nanosheet for Best Alkaline HER Performance at High Current Density> 500 mA cm− 2”, Advanced Materials Interfaces. 6(10), p. 1900308, 2019
92. Zhang, H., Feng, Z., Wang, L., Li, D., and Xing, P., “Bifunctional nanoporous Ni-Zn electrocatalysts with super-aerophobic surface for high-performance hydrazine-assisted hydrogen production”, Nanotechnology. 31(36), p. 365701, 2020
93. Anaee, R.A.M. and Abdulmajeed, M.H., “Tribocorrosion”, Advances in Tribology, 2016
94. Darband, G.B., Aliofkhazraei, M., and Rouhaghdam, A.S., “Nickel nanocones as efficient and stable catalyst for electrochemical hydrogen evolution reaction”, International Journal of Hydrogen Energy. 42(21), p. 14560-14565, 2017
95. Elias, L. and Hegde, A.C., “Modification of Ni–P alloy coatings for better hydrogen production by electrochemical dissolution and TiO 2 nanoparticles”, RSC advances. 6(70), p. 66204-66214, 2016
96. Stull, D.R., “Vapor pressure of pure substances. Organic and inorganic compounds”, Industrial & Engineering Chemistry. 39(4), p. 517-540, 1947
97. Konings, R. and Cordfunke, E., “The vapour pressures of hydroxides I. The alkali hydroxides KOH and CsOH”, The Journal of Chemical Thermodynamics. 20(1), p. 103-108, 1988
98. Herraiz-Cardona, I., Ortega, E., and Pérez-Herranz, V., “Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits”, Electrochimica Acta. 56(3), p. 1308-1315, 2011
99. Risović, D., Poljaček, S.M., Furić, K., and Gojo, M., “Inferring fractal dimension of rough/porous surfaces—A comparison of SEM image analysis and electrochemical impedance spectroscopy methods”, Applied Surface Science. 255(5), p. 3063-3070, 2008
100. Mert, M.E. and Kardaş, G., “Electrocatalytic behaviour of NiBi coatings for hydrogen evolution reaction in alkaline medium”, Journal of alloys and compounds. 509(37), p. 9190-9194, 2011
101. Younes, O. and Gileadi, E., “Electroplating of Ni/W alloys: I. Ammoniacal citrate baths”, Journal of The Electrochemical Society. 149(2), p. C100, 2002
102. Wang, M., Wang, Z., Guo, Z., and Li, Z., “The enhanced electrocatalytic activity and stability of NiW films electrodeposited under super gravity field for hydrogen evolution reaction”, international journal of hydrogen energy. 36(5), p. 3305-3312, 2011
103. Moe Jr, O.A. and Wiest, S.A., “Determination of stability constants for zinc-pyrophosphate complexes”, Analytical Biochemistry. 77(1), p. 73-78, 1977
104. Donten, M., Cesiulis, H., and Stojek, Z., “Electrodeposition of amorphous/nanocrystalline and polycrystalline Ni–Mo alloys from pyrophosphate baths”, Electrochimica Acta. 50(6), p. 1405-1412, 2005
105. Tan, Y., Zhuang, R., Yang, G., Tao, X., Chen, H., Ouyang, Y., and Du, Y., “Diffusional behaviors and mechanical properties of Ni-Zn system”, Journal of Alloys and Compounds. 881, p. 160581, 2021
106. Rupert, T.J. and Schuh, C.A., “Sliding wear of nanocrystalline Ni–W: structural evolution and the apparent breakdown of Archard scaling”, Acta Materialia. 58(12), p. 4137-4148, 2010
107. Vamsi, M., Wasekar, N.P., and Sundararajan, G., “Influence of heat treatment on microstructure and mechanical properties of pulse electrodeposited Ni-W alloy coatings”, Surface and Coatings Technology. 319, p. 403-414, 2017
108. Wang, C.-Y., Tseng, Y.-T., Lin, J.-C., Ciou, Y.-J., and Hwang, Y.-R., “Effect of [Zn2+]/[Cu2+] ratio of the bath on the composition and property of Cu–Zn alloy micropillars prepared using microanode-guided electroplating”, Electrochimica Acta. 375, p. 137969, 2021
109. Zhu, L., Younes, O., Ashkenasy, N., Shacham-Diamand, Y., and Gileadi, E., “STM/AFM studies of the evolution of morphology of electroplated Ni/W alloys”, Applied surface science. 200(1-4), p. 1-14, 2002
110. Petrauskas, A., Grincevičienė, L., Češūnienė, A., and Juškėnas, R., “Studies of phase composition of Zn–Ni alloy obtained in acetate-chloride electrolyte by using XRD and potentiodynamic stripping”, Electrochimica acta. 50(5), p. 1189-1196, 2005
111. Nash, P. and Pan, Y., “The Ni− Zn (Nickel-Zinc) system”, Journal of Phase Equilibria. 8(5), p. 422-430, 1987
112. 王玉, 盛敏奇, 翁文凭, 许继芳和曹孟秋,「电沉积非晶态 Co-W 合金镀层在碱性溶液中的电催化析氢研究」,材料研究学报. 31(10), 773-780頁,2017。
113. Żabiński, P., Mech, K., and Kowalik, R., “Electrocatalytically active Co–W and Co–W–C alloys electrodeposited in a magnetic field”, Electrochimica Acta. 104, p. 542-548, 2013
114. Metikoš-Huković, M., Grubač, Z., Radić, N., and Tonejc, A., “Sputter deposited nanocrystalline Ni and Ni-W films as catalysts for hydrogen evolution”, Journal of Molecular Catalysis A: Chemical. 249(1-2), p. 172-180, 2006
115. Allahyarzadeh, M., Aliofkhazraei, M., Rezvanian, A., Torabinejad, V., and Rouhaghdam, A.S., “Ni-W electrodeposited coatings: characterization, properties and applications”, Surface and Coatings Technology. 307, p. 978-1010, 2016
116. Benaicha, M., Allam, M., Dakhouche, A., and Hamla, M., “Electrodeposition and characterization of W-rich NiW alloys from citrate electrolyte”, Int. J. Electrochem. Sci. 11(9), p. 7605-7620, 2016
117. Elias, L., Cao, P., and Hegde, A.C., “Magnetoelectrodeposition of Ni–W alloy coatings for enhanced hydrogen evolution reaction”, RSC advances. 6(112), p. 111358-111365, 2016
118. Elias, L. and Hegde, A.C., “Effect of including the carbon nanotube and graphene oxide on the electrocatalytic behavior of the Ni–W alloy for the hydrogen evolution reaction”, New Journal of Chemistry. 41(22), p. 13912-13917, 2017
119. Elias, L. and Hegde, A.C., “Synthesis of Ni-W-Graphene oxide composite coating for alkaline hydrogen production”, Materials Today: Proceedings. 5(1), p. 3078-3083, 2018
120. Elias, L., Scott, K., and Hegde, A.C., “Electrolytic synthesis and characterization of electrocatalytic Ni-W alloy”, Journal of Materials Engineering and Performance. 24(11), p. 4182-4191, 2015
121. Neethu, R.M. and Hegde, A.C., “Development of Ni-W alloy coatings and their electrocatalytic activity for water splitting reaction”, Physica B: Condensed Matter. 597, p. 412359, 2020
122. Oliver-Tolentino, M.A., Arce-Estrada, E.M., Cortés-Escobedo, C.A., Bolarín-Miro, A.M., Sánchez-De Jesús, F., González-Huerta, R.d.G., and Manzo-Robledo, A., “Electrochemical behavior of NixW1− x materials as catalyst for hydrogen evolution reaction in alkaline media”, Journal of alloys and compounds. 536, p. S245-S249, 2012
123. Telli, E., Farsak, M., and Kardaş, G., “Investigation of noble metal loading CoWZn electrode for HER”, international journal of hydrogen energy. 42(36), p. 23260-23267, 2017
124. Jaksic, M.M., “Hypo–hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions”, International journal of hydrogen energy. 26(6), p. 559-578, 2001
125. Jakšić, M.M., “Hypo–hyper-d-electronic interactive nature of synergism in catalysis and electrocatalysis for hydrogen reactions”, Electrochimica Acta. 45(25-26), p. 4085-4099, 2000
126. Shetty, S., Sadiq, M.M.J., Bhat, D.K., and Hegde, A.C., “Electrodeposition and characterization of Ni-Mo alloy as an electrocatalyst for alkaline water electrolysis”, Journal of Electroanalytical Chemistry. 796, p. 57-65, 2017
127. Ullal, Y. and Hegde, A.C., “Electrodeposition and electro-catalytic study of nanocrystalline Ni–Fe alloy”, International journal of hydrogen energy. 39(20), p. 10485-10492, 2014
128. Ahn, S.H., Hwang, S.J., Yoo, S.J., Choi, I., Kim, H.-J., Jang, J.H., Nam, S.W., Lim, T.-H., Lim, T., and Kim, S.-K., “Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis”, Journal of Materials Chemistry. 22(30), p. 15153-15159, 2012
129. Zhang, Z., Wu, Y., and Zhang, D., “Potentiostatic electrodeposition of cost-effective and efficient Ni–Fe electrocatalysts on Ni foam for the alkaline hydrogen evolution reaction”, International Journal of Hydrogen Energy. 47(3), p. 1425-1434, 2022
130. ZHANG, W.-G., SHANG, Y.-P., LIU, L.-N., YAO, S.-W., and WANG, H.-Z., “Electrochemical Preparation of a Ni-WP Nanowire Array and Its Photoelectrocatalytic Activity for the Hydrogen Evolution Reaction”, Acta Physico-Chimica Sinica. 27(4), p. 900-904, 2011
131. Herraiz-Cardona, I., Ortega, E., Antón, J.G., and Pérez-Herranz, V., “Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits”, International journal of hydrogen energy. 36(16), p. 9428-9438, 2011 |