博碩士論文 109323114 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.147.60.193
姓名 劉育嘉(Yu-jia Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微量鋯、鈧與退火溫度對Al-5Mg-0.7Mn合金再結晶、敏化腐蝕性與機械性質的影響
(Effect of Zr, Sc and annealing temperature on the recrystallization, sensitizied corrosion behavior and mechanical properties of Al Al-5Mg -0.7Mn alloy)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 藉由光學顯微鏡(OM)、導電度(%IACS)、電子背向散射繞射(EBSD)、硝酸重量損失量測(ASTM G67)與機械性質量測,探討微量Zr (0.15wt%)、Sc (0.1wt%)與退火溫度,對AA5383(Al-5Mg-0.7Mn)合金之再結晶、抗敏化腐蝕、與機械與性質之影響。結果顯示,均質化過程中,因含微量Mn、Zr 與Sc 之合金,於晶粒內分別析出細小之MnAl4、Al3Zr與Al3Sc散佈相顆粒,有效阻礙再結晶、及晶粒成長,導致晶粒細化、及細晶強化;另外,微量Zr、Sc的添加,可提升合金之強度,其中又以退火溫度250℃時含Sc之合金強化效果最為顯著。低溫(250℃)退火時,合金發生部分再結晶,大部分仍屬織狀微結構,經敏化處理後,β相(Mg2Al3)會析出於晶界和次晶界上,此時合金具有較佳之抗敏化腐蝕能力,且因含Zr與Sc之合金,再結晶比例較含Mn合金低,所以含Zr與Sc之合金具有較佳耐腐蝕。當高溫(≥300℃)下退火,合金幾乎已經完全再結晶,導致抗敏化腐蝕能力的下降,晶粒愈細,抗蝕性愈低,此時,以含Mn合金有最佳之抗敏化腐蝕能力,含Sc合金則最低。當合金於高溫退火導致晶粒成長時,可略提升合金之抗敏化腐蝕能力。
摘要(英) This study used microstructure observation, electrical conductivity (%IACS), electron backscatter diffraction (EBSD), electron microscope (SEM), nitric acid corrosion weight loss test, tensile test and hardness test (HRF), etc., to discuss the effects of Zr (0.15wt%)、Sc (0.1wt%), and annealing temperature on the recrystallization, corrosion and mechanical properties of Al-5Mg-0.7Mn alloy.
The results showed that the alloy containing minor of Zr (0.15wt%) and Sc (0.1wt%) will precipitate Al3Zr and Al3Sc dispersed phase particles in the grains during the homogenization process, which can increase the recrystallization temperature of the alloy and effectively. In addition, the addition of trace amounts of Zr and Sc can improve the strength of the alloy, and the strengthening effect of the alloy containing Sc is the most significant when the annealing temperature is 250 °C. When annealed at a low temperature (250 °C), the alloy is partially recrystallized, and most of it still has a textured microstructure. After sensitization treatment, the β(Mg2Al3) phase will precipitate discontinuously on the grain boundary and subgrain boundary. Therefore, the alloy has excellent resistance to sensitized corrosion. Because the recrystallization ratio of the alloy containing Zr and Sc is lower than that of the alloy containing Mn. The alloy containing Zr and Sc has better corrosion resistance.
When annealed at high temperature (≥300°C), the alloy is almost completely recrystallized, and the β phase will continuously precipitate on the grain boundary, resulting in a decrease in the alloy′s resistance to sensitized corrosion. The finer the grains, the lower the corrosion resistance. Therefore, the corrosion resistance of Mn-containing alloys is the best. The sensitized corrosion resistance of the alloy is slightly improved when grain growth is induced by annealing at a high temperaturessure.
關鍵字(中) ★ Al-Mg合金
★ AA5383
★ 製程退火
★ 再結晶
★ 機械性質
★ 敏化腐蝕性質
關鍵字(英) ★ Al-Mg alloy
★ AA5383
★ annealing
★ recrystalline
★ mechanical properties
★ sensitizied corrosion
論文目次 摘要 I
Abstract II
謝誌 IV
總目錄 V
圖目錄 VIII
表目錄 XI
壹、前言與文獻回顧 1
1.1鋁合金簡介 1
1.2 AA5383合金簡介 2
1.3鋁鎂合金強化機制 3
1.4添加金屬元素對鋁合金之影響 4
1.4.1鎂對鋁合金的影響 4
1.4.2添加微量錳(Manganese)對鋁合金的影響 6
1.4.3 添加微量鋯(Zirconium)對鋁合金的影響 7
1.4.4 添加微量鈧(Scandium)對鋁合金之影響 9
1.4.5 其他元素對鋁合金的影響 12
1.4.6 鐵對鋁合金之影響 12
1.4.7 矽對鋁合金之影響 12
1.5 退火溫度對鋁鎂合金機械性質與顯微結構之影響 13
1.5.1 回復 13
1.5.2 再結晶 13
1.5.3 晶粒成長 14
1.6鋁鎂合金之腐蝕與影響鋁鎂合金腐蝕性直之因素簡介 16
1.6.1鋁鎂合金之腐蝕機制 16
1.6.2 影響鋁鎂合金β相析出之影響 18
1.6.3 鎂含量對β相析出之影響 19
1.6.4 冷加工量對β相析之影響 20
1.6.5 敏化溫度與時間對β相析出之影響 22
1.6.6 退火溫度對β相析出之影響 23
1.7實驗動機與目的 24
貳、實驗步驟與方法 27
2.1 實驗目的及流程 27
2.2 熱軋與H18冷加工 28
2.3 顯微結構分析 29
2.3.1 光學顯微鏡 (Optical Microscopy) 29
2.3.2 掃描式電子顯微鏡(Scanning Electron Microscopy) 30
2.4 導電度量測 (Electrical Counductivity,%IACS) 30
2.5腐蝕性質分析 31
2.5.1 ASTM G67 Nitric Acid Mass Loss Test (NAMLT) 31
2.6機械性質分析 33
2.6.1硬度檢測(Hardness,HV) 33
2.6.2拉伸試驗(Tensile Test) 33
參、結果與討論 34
3.1微結構與再結晶分析 34
3.1.1 微結構分析 34
3.1.2再結晶微結構分析 36
3.1.3導電度分析 39
3.2腐蝕性質分析 41
3.2.1 敏化處理後β相析出形貌 41
3.2.2 ASTM G67 重量損失測試 43
3.3機械性質分析 48
肆、結論 51
伍、參考文獻 52
參考文獻 [ASTM1] ASTM B928/B928M-09 Standard Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service and Similar Environments.
[ASTM2] ASTM G67-04, “Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5XXX Series Aluminum Alloys by Mass Loss After Exposure to Nitric Acid (NAMLT TEST),” ASTM Internation, West Conshohocken, PA, (1999)
[BEL] N.A. Belov, A.N. Alabin, “Effect of Zr additions and annealing temperature on electrical conductivity and hardness of hot-rolled Al sheets”, Trans. Nonferrous Met. Soc. China 25, pp. 2817−2826 (2015)
[BEN] S. Benson, J. Downes and R.S. Dow, “Ultimate Strength Characteristics of Aluminium Plates for High Speed Vessels,” Ships and Offshore Structures, Vol.6, No.1-2, pp. 67-80 (2011)
[BHA] N. R. M. R. Bhargava, I. Samajdar, S. Ranganathan and M. K. Surappa, “Role of cold work and SiC reinforcements on the β′/β precipitation in Al-10 pct Mg alloy,” Metallurgical and Materials Transactions A, Vol. 29, No.11, pp. 2835-2842 (1998)
[BIR] N. Birbilis and R.G. Buchheit, “BIR,” Journal of The Electrochemical Society, Vol.152, No.4, pp. B140-B151 (2005)
[CAV] M. K. Cavanaugh,a N. Birbilis, R. G. Buchheita, and F. Bovard,” Investigating localized corrosion susceptibility arising from Sc containing intermetallic Al3Sc in high strength Al-alloys,”Scripta Materialia, Vol.56, pp.995-998 (2007)
[DAV1] J. R. Davis and Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, PP. 34-36 (2007)
[DAV2] V.G. Davydov, T.D. Rostova, “Scientific principles of making an alloying addition of scandium to aluminum alloys”, Materials Science and Engineering, A280, pp. 30-36 (2000)
[DAV3] A. J. Davenport et al., “Intergranular Corrosion and Stress Corrosion Cracking of Sensitised AA5182,” Materials Science Forum, Vol. 519–521, pp. 641–646 (2006)
[DIX] E. H. Dix Jr., W. A. Anderson and M. B. Shumaker, “Influence of service temperature on the resistance of wrought aluminum-magnesium alloys to corrosion,” Corrosion, Vol.15, pp. 19–26 (1959)
[DOH] R. D. Doherty, “Role of interfaces in kinetics of internal shape changes,” Metal Science, Vol.16, pp.1-13 (1982)
[GAO] J. Gao and D. J. Quesnel, “Enhancement of the stress corrosion sensitivity of AA5083 by heat treatment”, Metallurgical and Materials Transactions A, Vol.42, pp.356-364 (2010)
[GEO] E.T. George and D. S. MacKenzie, Handbook of Aluminum Volume 1: Physical Metallurgy and Processes. Marcel Dekker Inc., New York, pp.93-94 (2003)
[GOS] R. Goswami, G. Spanos, P. S. Pao and R. L. Holtz, “Precipitation Behavior of the β Phase in Al-5083,” Materials Science and Engineering A, Vol.527, No.4–5, pp.1089-1095 (2010)
[GUP] R. K. Gupta, R. Zhang, C. H. J. Davies and N. Birbilis, “Influence of Mg Content on the Sensitization and Corrosion of Al-xMg(-Mn) Alloys,” Corrosion, Vol.69, No.11, pp.1081-1087 (2013)
[Hum] F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Oxford, pp.2-3 (2004)
[JAI] S. Jain, M.L.C. Lim, J.L. Hudson , J.R. Scully, “Spreading of intergranular corrosion on the surface of sensitized Al-4.4Mg alloys: A general finding”, Corrosion Science, Vol. 59, pp.136-147 (2012)
[KAU] J. G. Kaufman and E. L. Rooy, “Aluminum alloy casting properties, processes, and applications”, AFS&ASM , pp.15 (2004)
[LAM] L. K. Lamikov and G.V. Samsonov,”Soviet Non-Ferrous Metals Res,”(USSR), Vol. 9, pp.79-82 (1964)
[LEE1] S. W. Lee and J. W. Yeh, “ Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion,” Materials Science and Engineering A, Vol. 460-461, pp. 409-419 (2007)
[LEE2] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, and T. G. Langdon, “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys,” Acta Materialia, Vol. 50, pp. 553-564 (2002)
[LEE3] Y. B. Lee, D. H. Shin, K. T. Park, and W. J. Nam, “Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature,” Scripta Materialia, Vol. 51, pp. 355-359 (2004)
[LEE4] S. L. Lee, Y. C. Chiu, T. A. Pan , G. M. Chen , X.C. Jiang, H. Y. Bor , Y. C. Tzeng, “ The Effects of a Trace Amount of Manganese and the Homogenization on the Recrystallization of Al–7Mg–0.15Ti Alloys,”Vol. 26, No.168 (2021)
[LEE5] S. L. Lee, Y. C. Chiu, T. A. Pan , G. M. Chen , X.C. Jiang, H. Y. Bor , Y. C. Tzeng, “ The Effects of a Trace Amount of Manganese and the Homogenization on the Recrystallization of Al–7Mg–0.15Ti Alloys,” Vol. 11, No.470 (2021)
[LIU] Z. Liu, Z. Li, M. Wang, and Y. Weng, “Effect of complex alloying of Sc, Zr and Ti on the microstructure and mechanical properties of Al-5Mg alloys,” Materials Science and Engineering A, Vol.483-484, pp.120-122, 2008.
[MAS] T. B. Massalski, J. L. Murray, and L. H. Bennet, “Binary Alloy Phase Diagrams,” ASM International, Ohio, p.130 (1990)
[NAK] Y. Nakayama, T. Takaai, D. Jin, “Precipitation behaviors of β-phase and changes in mechanical properties of Al-Mg system alloys”, Materials. Sci. Forum , Vol . 217–222, pp.1269– 1274 (1996)
[NOR1] A. F. Norman, P. B. Prangnell and R. S. Mcewen,” The solidification behaviour of dilute aluminium-scandium alloys,” Acta Materialia, Vol. 46, pp. 5715-5732 (1998)
[NOR2] A. F. Norman, K. Hyde, F. Costello, S. Thompson, S. Briley, P.B. Prangnell, “Examination of the effect of Sc on 2000 and 7000 series aluminum alloy castings: for improvements in fusion welding, ” Materials Science and Engineering A, Vol. 354, pp. 188-198 (2003)
[OCE] V. Ocenasek, M. Slamova, “Resistance to recrystallization due to Sc and Zr addition to Al–Mg alloys”, Materials Characterization, Vol. 47 pp. 157-162 (2001)
[OGU] I. N. A. Oguocha, O. J. Adigun, S. Yannacopoulos, “Effect of Sensitization Heat Treatment on Properties of Al-Mg Alloy AA5083-H116”, J Mater Sci, Vol. 43, pp. 4208-4214 (2008)
[POP] M. Popovic, E. Romhanji, “Stress corrosion cracking susceptibility of Al-Mg alloy sheet with high Mg content”, Journal of Materials Processing technology, Vol. 125-126, pp. 275-280 (2002)
[REB] M. C. Reboul, B. Baroux, “Metallurgical aspects of corrosion resistance of aluminium alloys”, Materials and Corrosion, Vol. 62, pp. 215-233 (2011)
[ROY] J. Røyset and N. Ryum,” Scandium in aluminium alloys”, International materials review, Vol. 50, No.1(2005)
[SCA] G.M. Scamans, N.J.H. Holroyd, C. D.S. Tuck, “The role of magnesium segregation in the intergranular stress corrosion cracking of aluminium alloys”, Corrosion Science, Vol.27,pp. 329-347 (1987)
[SEA] J. L. Searles, P. I. Gouma, and R. G. Buchheit, “Stress Corrosion Cracking of Sensitized AA5083(Al-4.5Mg-1.0Mn),” Metallurgical and Materials Transactions A, Vol. 32, pp.2859-2867 (2001)
[SIE] R.A. Sielski, “Research Needs in Aluminum Structure,” Ships and Offshore Structures, Vol.3, No.1, pp.57-65 (2008)
[TAN] L. Tan, T. R. Allen,” Effect of thermomechanical treatment on the corrosion of AA5083,” Corrosion Science, Vol.52, pp.548-554 (2010)
[VEN] K. Venkateswarlu, L. C. Pathak, A. K. Ray, Goutam Das, P. K. Verma, M. Kumar and R. N. Ghosh, “Microstructure, tensile strength and wear behaviour of Al-Sc alloy”, Material Science and Engineering A, Vol.383, pp.374-380 (2004)
[WU] L. M. Wu, W. H. Wang, Y. F. Hsu, and S. Trong, “Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al-Zn-Mg-Sc-Zr alloy,” Journal of Alloys and Compounds, Vol.456, pp.163-169 (2008)
[YAN1] J. Yan, N. M. Heckman, L. Velasco, and A. M. Hodge, “Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries,” Scientific Reports, Vol. 6, pp.1 ( 2016)
[YAN2] D. Yang, X. Li, D. He, and H. Huang, “Effect of minor Er and Zr on microstructure and mechanical properties of Al-Mg-Mn alloy (5083) welded joints,” Materials Science & Engineering A, Vol.561, pp.226-231 (2013)
[YIN] Z. Yin, Q. Pan, Y. Zhang, F. Jiang,” Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys,” Materials Science and Engineering A, Vol.280, pp.151-155 (2000)
[YUK] H. Yukawa, Y. Murata, M. Morinaga, Y. Takahashi, and H. Yoshida, “Heterogeneous Distributions of Magnesium Atoms Near the Precipitate in Al-Mg Based Alloys,” Acta Metallurgica et Materialia, Vol. 43, pp. 681-688 (1995)
[ZHA] R. Zhang, M. A. Steiner, S. R. Agnew, S. K Kairy, C. H. J. Davies, N. Birbilis” Expriment-based modelling of grain boundaryβ-phase (Mg2Al3) evolution during sensitisation of aluminium alloy AA5083,” Scientific reports (2017)
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2022-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明