博碩士論文 109323016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.22.77.233
姓名 張昌晏(Chang-Yen Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以微波輔助純水及有機溶劑進行熱塑型微流道封裝之製程
(Microwave-assisted water/organic solvent bonding process of thermoplastic based microfluidics channel.)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 複合式物理力的生物反應器自動化與控制設計★ 外部致動之微流體機電控制平台
★ 以微铣削進行高分子微流體裝置之製程整合★ 奈米矽質譜晶片於質譜檢測之應用研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 單晶矽材料電化學放電鑽孔及同軸電度之研究★ 微流道中液滴成形及滴落現象之模擬分析
★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-19以後開放)
摘要(中) 摘要
本論文以微波輔助純水與有機溶劑,進行熱塑型微流道之封裝製程,在微波輔助純水的接合製程中,除了有高接合強度以及接合覆蓋率以外,對於生物晶片中的微流道完整性以及微流道汙染等,可能影響到檢測結果的難題以及疑慮,透過微波輔助純水接合製程皆能有效的解決。而在微波輔助有機溶劑接合製程中,能使原先在低濃度有機溶劑無法進行接合的情形,在經過微波輔助下達成接合,並且與微波輔助純水接合製程相比更能大幅提升接合強度,因此不論是以微波輔助純水或者是有機溶劑進行接合製程,針對不同的接合製程下優化其接合參數。在接合製程中,首先需對於聚甲基丙烯酸甲酯(PMMA)基材表面進行改質的製程,包含兩種不同的改質方式,分別為物理性表面改質與有機溶劑表面改質,在經過表面改質製程後,便能使接合材料均勻的連結兩個接合面,並以簡單的加壓夾具對基材進行加壓後,透過微波加熱並接合,其中利用純水與有機溶劑的介電性,能夠在微波過程中針對接合介面加熱,達到介電加熱(Dielectric heating)的效果,而能夠有效改善微流道變形以及提升接合性能。因此在本論文中,除了探討純水經物理性表面改質,以及有機溶劑表面改質對於接合的影響之外,在經過微波的輔助下也大幅提升了接合性能,也對於相關微波的參數之影響進行探討。最後,從實驗結果中顯示,在以微波輔助純水以及有機溶劑接合中,最大的接合覆蓋率皆可以達到99%,而接合強度分別可以達到0.7MPa與2.6MPa,並且沒有微流道變形的情形產生。
摘要(英) Abstract
This study demonstrated the microwave-assisted water/organic solvent bonding process for the thermoplastic microfluidics channel. This bonding process can effectively improve bonding coverage and strength. At the same time, it has the advantages of a clean and pollution-free bonding process, and microchannel integrity and can be a better bonding process for the microfluidic system for biological application. The previous bonding technologies of the biochip usually bonded the substrates via high concentration organic solvents or adhesive materials, which caused the samples of bioassays in the microchannel to be contaminated and reduced the accuracy of the detection results.
In this bonding process, the polymethyl methacrylate (PMMA) substrates should be performed surface activation pretreatment followed by physical surface activation and organic solvent activation to achieve bonding. After activation, the water and organ solvents can spread more uniformly on the bonding interface. In the microwave heating process, water/organic solvent both have an excellent dielectric constant for dielectric heating the bonding interface. Moreover, this study will discuss the bonding mechanism of the surface activation for bonding the PMMA substrates and bonding performance on different bonding parameters. The result of experiments showed that the microwave-assisted water/organic solvent bonding method presents the maximum bonding coverage up to 99%, and bonding strength respectably up to 0.7MPa, and 2.6MPa, and without any microchannel distortion issue.
關鍵字(中) ★ 微流道製造
★ 微波輔助接合
★ 純水輔助接合
★ 表面改質
★ 熱塑型生物晶片
關鍵字(英) ★ Microchannel fabrication
★ Microwave-assisted bonding
★ Water-assisted bonding
★ Surface activation
★ Thermoplastic-based biochip
論文目次 目錄
摘要 iii
Abstract iv
致謝 v
目錄 vi
圖目錄 ix
第一章 前言 1
1-1 微流道晶片及其應用 1
1-2 微流道晶片之基底材料 2
1-3 高分子微流道晶片之製造方法 3
1-4 高分子微流道晶片之接合封裝方法 4
1-4-1 直接接合法(Direct bonding) 5
1-4-2 間接接合法(Indirect bonding) 9
1-5 高分子材料物理性表面改質方法 13
1-5-1 紫外光臭氧處理(UV-Ozone treatment) 13
1-5-2 氧電漿處理(Oxygen plasma treatment) 13
1-6 研究動機 15
第二章 實驗材料設備與方法 17
2-1 實驗材料 17
2-2 微流體晶片製造過程 17
2-2-1 微流道的製造 18
2-2-2 表面改質製程 18
2-2-3 微波加熱製程 21
2-3 表面特性量測 21
2-3-1 接觸角量測 22
2-3-2 衰減式全反射傅立葉轉換紅外光譜儀量測(ATR-FTIR) 22
2-3-3 原子力顯微鏡量測(AFM) 23
2-4 接合性能量測 23
2-4-1 接合強度量測 23
2-4-2 接合覆蓋率量測 24
2-4-3 紫外光/可見光譜儀量測(UV-Vis) 25
第三章 結果與討論 26
3-1 接合機制之差異 26
3-1-1 以純水加上物理性表面改質方式進行接合 26
3-1-2 以有機溶劑表面改質進行接合 27
3-2 接合參數對表面特性之影響 29
3-2-1 物理性表面改質時間對接觸角之影響 29
3-2-2 有機溶劑濃度對接觸角之影響 30
3-2-3 物理性表面改質時間對表面化學鍵結之影響 31
3-2-4 物理性表面改質時間對表面粗糙度之影響 34
3-2-5 物理性表面改質時間對透光率之影響 35
3-3 純水接合參數對接合性能之影響 36
3-3-1 改質時間與接合水層之影響 36
3-3-2 微波時間之影響 42
3-4 有機溶劑接合參數對接合性能之影響 43
3-4-1 微波時間之影響 50
3-4-2 介電加熱之探討 51
3-5 純水/有機溶劑輔助微波製程之實例 53
第四章 結論 57
參考文獻 1. Kim, K., et al., Highly sensitive and wearable liquid metal‐based pressure sensor for health monitoring applications: integration of a 3D‐printed microbump array with the microchannel. Advanced healthcare materials, 2019. 8(22): p. 1900978.
2. Capretto, L., et al., Micromixing within microfluidic devices. Microfluidics, 2011: p. 27-68.
3. Jeroish, Z., et al., Microheater: material, design, fabrication, temperature control, and applications—a role in COVID-19. Biomedical microdevices, 2022. 24(1): p. 1-49.
4. Huh, D., et al., Reconstituting organ-level lung functions on a chip. Science, 2010. 328(5986): p. 1662-1668.
5. Ye, N., et al., Cell-based high content screening using an integrated microfluidic device. Lab on a Chip, 2007. 7(12): p. 1696-1704.
6. Vandenberg, O., et al., Considerations for diagnostic COVID-19 tests. Nature Reviews Microbiology, 2021. 19(3): p. 171-183.
7. Hou, X., et al., Interplay between materials and microfluidics. Nature Reviews Materials, 2017. 2(5): p. 1-15.
8. Pandey, C.M., et al., Microfluidics based point‐of‐care diagnostics. Biotechnology journal, 2018. 13(1): p. 1700047.
9. Sharma, S., et al., Point-of-care diagnostics in low resource settings: present status and future role of microfluidics. Biosensors, 2015. 5(3): p. 577-601.
10. McDonald, J.C., et al., Fabrication of microfluidic systems in poly (dimethylsiloxane), in ELECTROPHORESIS: An International Journal. 2000. p. 27-40.
11. Wlodarczyk, K.L., D.P. Hand, and M.M. Maroto-Valer, Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser. Scientific reports, 2019. 9(1): p. 1-13.
12. Qin, D., Y. Xia, and G.M. Whitesides, Soft lithography for micro-and nanoscale patterning. Nature protocols, 2010. 5(3): p. 491.
13. Becker, H. and C. Gärtner, Polymer microfabrication methods for microfluidic analytical applications. ELECTROPHORESIS: An International Journal, 2000. 21(1): p. 12-26.
14. Attia, U.M., S. Marson, and J.R. Alcock, Micro-injection moulding of polymer microfluidic devices. Microfluidics and nanofluidics, 2009. 7(1): p. 1-28.
15. Guckenberger, D.J., et al., Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab on a Chip, 2015. 15(11): p. 2364-2378.
16. Giri, K. and C.-W. Tsao, Recent Advances in Thermoplastic Microfluidic Bonding. Micromachines, 2022. 13(3): p. 486.
17. Zhu, X., et al., Study of PMMA thermal bonding. Microsystem Technologies, 2007. 13(3): p. 403-407.
18. Shaegh, S.A.M., et al., Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding. Sensors and Actuators B: Chemical, 2018. 255: p. 100-109.
19. Roy, S., et al., Thermal bonding of microfluidic devices: Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers. Sensors and Actuators B: Chemical, 2012. 161(1): p. 1067-1073.
20. Brown, L., et al., Fabrication and characterization of poly (methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab on a Chip, 2006. 6(1): p. 66-73.
21. Chen, P.-C. and L.H. Duong, Novel solvent bonding method for thermoplastic microfluidic chips. Sensors and Actuators B: Chemical, 2016. 237: p. 556-562.
22. Wan, A.M., T.A. Moore, and E.W. Young, Solvent bonding for fabrication of PMMA and COP microfluidic devices. JoVE (Journal of Visualized Experiments), 2017(119): p. e55175.
23. Ng, S.P., F.E. Wiria, and N.B. Tay, Low distortion solvent bonding of microfluidic chips. Procedia Engineering, 2016. 141: p. 130-137.
24. Bamshad, A., A. Nikfarjam, and H. Khaleghi, A new simple and fast thermally-solvent assisted method to bond PMMA–PMMA in micro-fluidics devices. Journal of Micromechanics and Microengineering, 2016. 26(6): p. 065017.
25. Berdichevsky, Y., et al., UV/ozone modification of poly (dimethylsiloxane) microfluidic channels. Sensors and Actuators B: Chemical, 2004. 97(2-3): p. 402-408.
26. Truckenmüller, R., et al., Bonding of polymer microstructures by UV irradiation and subsequent welding at low temperatures. Microsystem technologies, 2004. 10(5): p. 372-374.
27. Tsao, C., et al., Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab on a Chip, 2007. 7(4): p. 499-505.
28. Eddings, M.A., M.A. Johnson, and B.K. Gale, Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. Journal of Micromechanics and Microengineering, 2008. 18(6): p. 067001.
29. Klank, H., J.P. Kutter, and O. Geschke, CO 2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab on a Chip, 2002. 2(4): p. 242-246.
30. Jiang, X., S. Chandrasekar, and C. Wang, A laser microwelding method for assembly of polymer based microfluidic devices. Optics and Lasers in Engineering, 2015. 66: p. 98-104.
31. Volpe, A., et al., Welding of PMMA by a femtosecond fiber laser. Optics Express, 2015. 23(4): p. 4114-4124.
32. Luo, Y., et al., Ultrasonic bonding for thermoplastic microfluidic devices without energy director. Microelectronic Engineering, 2010. 87(11): p. 2429-2436.
33. Kim, J., et al., Ultrasonic bonding for MEMS sealing and packaging. IEEE Transactions on Advanced Packaging, 2009. 32(2): p. 461-467.
34. Tsao, C.-W. and W.-C. Syu, Bonding of thermoplastic microfluidics by using dry adhesive tape. RSC advances, 2020. 10(51): p. 30289-30296.
35. Serra, M., et al., A simple and low-cost chip bonding solution for high pressure, high temperature and biological applications. Lab on a Chip, 2017. 17(4): p. 629-634.
36. Zamora, V., et al., Laser-microstructured double-sided adhesive tapes for integration of a disposable biochip. Multidisciplinary Digital Publishing Institute Proceedings, 2017. 1(4): p. 606.
37. Sivakumar, R. and N.Y. Lee, Heat and pressure-resistant room temperature irreversible sealing of hybrid PDMS–thermoplastic microfluidic devices via carbon–nitrogen covalent bonding and its application in a continuous-flow polymerase chain reaction. RSC advances, 2020. 10(28): p. 16502-16509.
38. Mair, D.A., et al., Room-temperature bonding for plastic high-pressure microfluidic chips. Analytical chemistry, 2007. 79(13): p. 5097-5102.
39. Lei, K.F., et al., Microwave bonding of polymer-based substrates for potential encapsulated micro/nanofluidic device fabrication. Sensors and Actuators A: Physical, 2004. 114(2-3): p. 340-346.
40. Toossi, A., et al., Bonding PMMA microfluidics using commercial microwave ovens. Journal of Micromechanics and Microengineering, 2015. 25(8): p. 085008.
41. Yussuf, A., et al., Microwave welding of polymeric-microfluidic devices. Journal of Micromechanics and Microengineering, 2005. 15(9): p. 1692.
42. Mani, K.B., M.R. Hossan, and P. Dutta, Thermal analysis of microwave assisted bonding of poly (methyl methacrylate) substrates in microfluidic devices. International Journal of Heat and Mass Transfer, 2013. 58(1-2): p. 229-239.
43. Allison, J., Photodegradation of poly (methyl methacrylate). Journal of Polymer Science Part A‐1: Polymer Chemistry, 1966. 4(5): p. 1209-1221.
44. Mitsuoka, T., A. Torikai, and K. Fueki, Wavelength sensitivity of the photodegradation of poly (methyl methacrylate). Journal of applied polymer science, 1993. 47(6): p. 1027-1032.
45. Shirai, M., T. Yamamoto, and M. Tsunooka, Ablative photodegradation of poly (methyl methacrylate) and its homologues by 185-nm light. Polymer degradation and stability, 1999. 63(3): p. 481-487.
46. Torikai, A., M. Ohno, and K. Fueki, Photodegradation of poly (methyl methacrylate) by monochromatic light: Quantum yield, effect of wavelengths, and light intensity. Journal of Applied Polymer Science, 1990. 41(5‐6): p. 1023-1032.
47. Chai, J., et al., Wettability interpretation of oxygen plasma modified poly (methyl methacrylate). Langmuir, 2004. 20(25): p. 10919-10927.
48. Murakami, T.N., et al., Surface modification of polystyrene and poly (methyl methacrylate) by active oxygen treatment. Colloids and Surfaces B: Biointerfaces, 2003. 29(2-3): p. 171-179.
49. Tsougeni, K., et al., Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces. Langmuir, 2009. 25(19): p. 11748-11759.
50. Michael P áMingos, D., Superheating effects associated with microwave dielectric heating. Journal of the Chemical Society, Chemical Communications, 1992(9): p. 674-677.
51. Tsao, C.-W. and D.L. DeVoe, Bonding of thermoplastic polymer microfluidics. Microfluidics and nanofluidics, 2009. 6(1): p. 1-16.
指導教授 曹嘉文(Chia-Wen Tsao) 審核日期 2022-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明