參考文獻 |
1. Kim, K., et al., Highly sensitive and wearable liquid metal‐based pressure sensor for health monitoring applications: integration of a 3D‐printed microbump array with the microchannel. Advanced healthcare materials, 2019. 8(22): p. 1900978.
2. Capretto, L., et al., Micromixing within microfluidic devices. Microfluidics, 2011: p. 27-68.
3. Jeroish, Z., et al., Microheater: material, design, fabrication, temperature control, and applications—a role in COVID-19. Biomedical microdevices, 2022. 24(1): p. 1-49.
4. Huh, D., et al., Reconstituting organ-level lung functions on a chip. Science, 2010. 328(5986): p. 1662-1668.
5. Ye, N., et al., Cell-based high content screening using an integrated microfluidic device. Lab on a Chip, 2007. 7(12): p. 1696-1704.
6. Vandenberg, O., et al., Considerations for diagnostic COVID-19 tests. Nature Reviews Microbiology, 2021. 19(3): p. 171-183.
7. Hou, X., et al., Interplay between materials and microfluidics. Nature Reviews Materials, 2017. 2(5): p. 1-15.
8. Pandey, C.M., et al., Microfluidics based point‐of‐care diagnostics. Biotechnology journal, 2018. 13(1): p. 1700047.
9. Sharma, S., et al., Point-of-care diagnostics in low resource settings: present status and future role of microfluidics. Biosensors, 2015. 5(3): p. 577-601.
10. McDonald, J.C., et al., Fabrication of microfluidic systems in poly (dimethylsiloxane), in ELECTROPHORESIS: An International Journal. 2000. p. 27-40.
11. Wlodarczyk, K.L., D.P. Hand, and M.M. Maroto-Valer, Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser. Scientific reports, 2019. 9(1): p. 1-13.
12. Qin, D., Y. Xia, and G.M. Whitesides, Soft lithography for micro-and nanoscale patterning. Nature protocols, 2010. 5(3): p. 491.
13. Becker, H. and C. Gärtner, Polymer microfabrication methods for microfluidic analytical applications. ELECTROPHORESIS: An International Journal, 2000. 21(1): p. 12-26.
14. Attia, U.M., S. Marson, and J.R. Alcock, Micro-injection moulding of polymer microfluidic devices. Microfluidics and nanofluidics, 2009. 7(1): p. 1-28.
15. Guckenberger, D.J., et al., Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab on a Chip, 2015. 15(11): p. 2364-2378.
16. Giri, K. and C.-W. Tsao, Recent Advances in Thermoplastic Microfluidic Bonding. Micromachines, 2022. 13(3): p. 486.
17. Zhu, X., et al., Study of PMMA thermal bonding. Microsystem Technologies, 2007. 13(3): p. 403-407.
18. Shaegh, S.A.M., et al., Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding. Sensors and Actuators B: Chemical, 2018. 255: p. 100-109.
19. Roy, S., et al., Thermal bonding of microfluidic devices: Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers. Sensors and Actuators B: Chemical, 2012. 161(1): p. 1067-1073.
20. Brown, L., et al., Fabrication and characterization of poly (methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab on a Chip, 2006. 6(1): p. 66-73.
21. Chen, P.-C. and L.H. Duong, Novel solvent bonding method for thermoplastic microfluidic chips. Sensors and Actuators B: Chemical, 2016. 237: p. 556-562.
22. Wan, A.M., T.A. Moore, and E.W. Young, Solvent bonding for fabrication of PMMA and COP microfluidic devices. JoVE (Journal of Visualized Experiments), 2017(119): p. e55175.
23. Ng, S.P., F.E. Wiria, and N.B. Tay, Low distortion solvent bonding of microfluidic chips. Procedia Engineering, 2016. 141: p. 130-137.
24. Bamshad, A., A. Nikfarjam, and H. Khaleghi, A new simple and fast thermally-solvent assisted method to bond PMMA–PMMA in micro-fluidics devices. Journal of Micromechanics and Microengineering, 2016. 26(6): p. 065017.
25. Berdichevsky, Y., et al., UV/ozone modification of poly (dimethylsiloxane) microfluidic channels. Sensors and Actuators B: Chemical, 2004. 97(2-3): p. 402-408.
26. Truckenmüller, R., et al., Bonding of polymer microstructures by UV irradiation and subsequent welding at low temperatures. Microsystem technologies, 2004. 10(5): p. 372-374.
27. Tsao, C., et al., Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab on a Chip, 2007. 7(4): p. 499-505.
28. Eddings, M.A., M.A. Johnson, and B.K. Gale, Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. Journal of Micromechanics and Microengineering, 2008. 18(6): p. 067001.
29. Klank, H., J.P. Kutter, and O. Geschke, CO 2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab on a Chip, 2002. 2(4): p. 242-246.
30. Jiang, X., S. Chandrasekar, and C. Wang, A laser microwelding method for assembly of polymer based microfluidic devices. Optics and Lasers in Engineering, 2015. 66: p. 98-104.
31. Volpe, A., et al., Welding of PMMA by a femtosecond fiber laser. Optics Express, 2015. 23(4): p. 4114-4124.
32. Luo, Y., et al., Ultrasonic bonding for thermoplastic microfluidic devices without energy director. Microelectronic Engineering, 2010. 87(11): p. 2429-2436.
33. Kim, J., et al., Ultrasonic bonding for MEMS sealing and packaging. IEEE Transactions on Advanced Packaging, 2009. 32(2): p. 461-467.
34. Tsao, C.-W. and W.-C. Syu, Bonding of thermoplastic microfluidics by using dry adhesive tape. RSC advances, 2020. 10(51): p. 30289-30296.
35. Serra, M., et al., A simple and low-cost chip bonding solution for high pressure, high temperature and biological applications. Lab on a Chip, 2017. 17(4): p. 629-634.
36. Zamora, V., et al., Laser-microstructured double-sided adhesive tapes for integration of a disposable biochip. Multidisciplinary Digital Publishing Institute Proceedings, 2017. 1(4): p. 606.
37. Sivakumar, R. and N.Y. Lee, Heat and pressure-resistant room temperature irreversible sealing of hybrid PDMS–thermoplastic microfluidic devices via carbon–nitrogen covalent bonding and its application in a continuous-flow polymerase chain reaction. RSC advances, 2020. 10(28): p. 16502-16509.
38. Mair, D.A., et al., Room-temperature bonding for plastic high-pressure microfluidic chips. Analytical chemistry, 2007. 79(13): p. 5097-5102.
39. Lei, K.F., et al., Microwave bonding of polymer-based substrates for potential encapsulated micro/nanofluidic device fabrication. Sensors and Actuators A: Physical, 2004. 114(2-3): p. 340-346.
40. Toossi, A., et al., Bonding PMMA microfluidics using commercial microwave ovens. Journal of Micromechanics and Microengineering, 2015. 25(8): p. 085008.
41. Yussuf, A., et al., Microwave welding of polymeric-microfluidic devices. Journal of Micromechanics and Microengineering, 2005. 15(9): p. 1692.
42. Mani, K.B., M.R. Hossan, and P. Dutta, Thermal analysis of microwave assisted bonding of poly (methyl methacrylate) substrates in microfluidic devices. International Journal of Heat and Mass Transfer, 2013. 58(1-2): p. 229-239.
43. Allison, J., Photodegradation of poly (methyl methacrylate). Journal of Polymer Science Part A‐1: Polymer Chemistry, 1966. 4(5): p. 1209-1221.
44. Mitsuoka, T., A. Torikai, and K. Fueki, Wavelength sensitivity of the photodegradation of poly (methyl methacrylate). Journal of applied polymer science, 1993. 47(6): p. 1027-1032.
45. Shirai, M., T. Yamamoto, and M. Tsunooka, Ablative photodegradation of poly (methyl methacrylate) and its homologues by 185-nm light. Polymer degradation and stability, 1999. 63(3): p. 481-487.
46. Torikai, A., M. Ohno, and K. Fueki, Photodegradation of poly (methyl methacrylate) by monochromatic light: Quantum yield, effect of wavelengths, and light intensity. Journal of Applied Polymer Science, 1990. 41(5‐6): p. 1023-1032.
47. Chai, J., et al., Wettability interpretation of oxygen plasma modified poly (methyl methacrylate). Langmuir, 2004. 20(25): p. 10919-10927.
48. Murakami, T.N., et al., Surface modification of polystyrene and poly (methyl methacrylate) by active oxygen treatment. Colloids and Surfaces B: Biointerfaces, 2003. 29(2-3): p. 171-179.
49. Tsougeni, K., et al., Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces. Langmuir, 2009. 25(19): p. 11748-11759.
50. Michael P áMingos, D., Superheating effects associated with microwave dielectric heating. Journal of the Chemical Society, Chemical Communications, 1992(9): p. 674-677.
51. Tsao, C.-W. and D.L. DeVoe, Bonding of thermoplastic polymer microfluidics. Microfluidics and nanofluidics, 2009. 6(1): p. 1-16. |