博碩士論文 109323023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.117.192.53
姓名 劉世杰(Shih-Jie Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 用於質子交換膜燃料電池之低成本與高性能鈦網氣體擴散層
(Low-cost and high-performance titanium mesh gas diffusion layer for proton exchange membrane fuel cell)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 本研究使用鈦網作為質子交換膜燃料電池膜電極組中之氣體擴散層,取代目前常見且成本較高之碳紙。然而鈦金屬表面容易氧化形成二氧化鈦,將降低鈦網電子傳導率,增加接觸阻抗,故本研究以鹽酸酸洗製程使鈦網表面形成具抗氧化能力之氫化鈦層,提升其應用於低溫質子交換膜燃料電池中之抗氧化力與燃料電池之電流輸出。
研究中先以不同孔徑之鈦網取代低溫質子交換膜燃料電池膜電極組中陰極之碳紙氣體擴散層比較其性能,再以鹽酸酸洗鈦網提升鈦網在燃料電池中之抗氧化能力,實驗表明酸洗製程可顯著提升鈦網之抗氧化性,避免氧化物之生成,降低燃料電池之活化阻抗,與無酸洗之鈦網比較可提升燃料電池電流密度達33.6%。本研究開發最佳酸洗鈦網組裝為燃料電池時,操作於70 oC、1 atm空氣、0.6 V下所測得之電流密度為1782.1 mA/cm2,當氣體壓力於2 atm時,性能可提升至2428.1 mA/cm2,在相同測試條件下與商用碳紙相當,證實可取代碳紙作為低溫型質子交換膜燃料電池陰極端氣體擴散層之可用性。
摘要(英) This study aims to develop a low-cost gas diffusion layer for low-temperature proton exchange membrane fuel cells. In this study, the titanium mesh was used to replace carbon paper as the cathode gas diffusion layer. In order to avoid the property that titanium is easily oxidized to form a non-conductive titanium dioxide. Therefore, in this study, the titanium mesh was pickled with hydrochloric acid to form a titanium hydride layer with anti-oxidation ability on the surface of the titanium mesh, so as to improve its anti-oxidation ability and current output in the proton exchange membrane fuel cell.
In the study, the carbon paper gas diffusion layer of the cathode in the fuel cell membrane electrode group was replaced by titanium meshes with different pore sizes to compare its performance, and then the titanium meshes were acid-washed with hydrochloric acid to improve the antioxidant capacity of the titanium meshes in the fuel cell. The titanium mesh can significantly improve the oxidation resistance of the titanium mesh, avoid the formation of oxides, and reduce the activation resistance of the fuel cell. Compared with the titanium mesh without pickling, the current density of the fuel cell can be increased by 33.6%. The best titanium mesh developed in this research is a 200-mesh titanium mesh pickled with hydrochloric acid. The measured current density is 1782.1 mA/cm2 under operating conditions of 70 oC, 1 atm, and 0.6 V. When operating at 2 atm, The performance can be improved to 2428.1 mA/cm2, which is comparable to that of commercial carbon paper under the same test conditions, confirming the availability of replacing carbon paper as the gas diffusion layer at the cathode end of low temperature proton exchange membrane fuel cells.
關鍵字(中) ★ 氫能
★ 燃料電池
★ 氣體擴散層
★ 鈦網
★ 酸洗
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
目錄 vi
圖目錄 x
表目錄 xv
符號說明 xviii
第一章 緒論 1
1-1 前言 1
1-2  質子交換膜燃料電池 7
1-2-1 燃料電池種類 7
1-2-2 質子交換膜燃料電池工作原理 9
1-2-3 質子交換膜燃料電池之組成結構 13
1-2-4 燃料電池極化現象 24
1-3  電化學交流阻抗基本原理 32
1-4  研究動機與方向 35
第二章 文獻回顧 36
2-1  質子交換膜燃料電池 36
2-2  氣體擴散層 38
2-3  鈦作為氣體擴散層的缺點 41
2-4  改善鈦缺點的方法 43
2-5  燃料電池之電化學交流阻抗分析 45
第三章 實驗方法與設備 47
3-1  實驗架構流程 47
3-2  表面結構分析 48
3-2-1 場發射掃描式電子顯微鏡 48
3-3-2 拉曼光譜儀 49
3-3  鈦網表面清洗流程 50
3-4  鹽酸酸洗鈦網流程 51
3-5  燃料電池之各元件介紹 52
3-5-1 膜電極組(Membrane and Electrode Assembly, MEA) 53
3-5-2 矽膠氣密墊片 55
3-5-3 鎳金屬多孔材 56
3-5-4 金屬流道與雙極板 57
3-5-5 端板 57
3-6  燃料電池測試平台系統 58
3-7  電化學交流阻抗分析儀 63
第四章 結果與討論 67
4-1  不同目數鈦網與不同金屬多孔材凸出量對電池性能之影響 67
4-1-1 極化曲線測試 68
4-1-2 單電池之背壓性能分析 85
4-1-3 電化學交流阻抗頻譜分析 90
4-2  流道有無分區對燃料電池性能之影響 94
4-3  酸洗鈦網對燃料電池之影響 102
4-3-1 鈦網不同酸洗時間之鹽酸水溶液顏色與性能分析 102
4-3-2 極化曲線測試 105
4-3-3 單電池之背壓性能分析 108
4-3-4 電化學交流阻抗頻譜分析 111
4-4  鈦網表面微結構分析 112
4-4-1 場發射掃描式電子顯微鏡圖 113
4-4-2 拉曼光譜圖 116
4-5  鈦網電池與傳統碳紙電池之性能比較 118
4-5-1 不同操作壓力之單電池性能分析 119
4-5-2 長時間之單電池性能分析 123
第五章 結論與未來規劃 125
5-1  結論 126
5-2  未來規劃 128
第六章 參考文獻 129
參考文獻 [1] https://ember-climate.org/data/data-explorer/
[2] https://ember-climate.org/insights/research/global-electricity-review-2022/
[3] https://energywhitepaper.tw/pdf/1091118_%E8%83%BD%E6%BA%90%E8%BD%89%E5%9E%8B%E7%99%BD%E7%9A%AE%E6%9B%B8%E6%A0%B8%E5%AE%9A%E6%9C%AC.pdf
[4] https://www.moeaboe.gov.tw/ECW_WEBPAGE/FlipBook/2018EnergyStaHandBook/index.html
[5] https://ember-climate.org/about/why-coal-to-clean/
[6] S.M. Lu, A review of high-efficiency motors: Specification, policy, and technology, Renew. Sust. Energ. Rev. Vol. 59, pp. 1-12, 2016.
[7] A. Alaswad, A. Baroutaji, H. Achour, J. Carton, A. Al Makky, A.G. Olabi, Developments in fuel cell technologies in the transport sector, Int. J. Hydrog. Energy, Vol. 41, pp. 16499-16508, 2016.
[8] A.G. Olabi, T. Wilberforce, E.T. Sayed, K. Elsaid, M.A. Abdelkareem, Prospects of Fuel Cell Combined Heat and Power Systems, Energies, Vol. 13, pp. 4104, 2020.
[9] J.F. Wu, X.Z. Yuan, J.J. Martin, H.J. Wang, J.J Zhang, J. Shen, S.H. Wu, W. Merida, A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies, Int. J. Hydrogen Energy, Vol. 184, pp. 104-109, 2008.
[10] Y. Wang, K.S. Chen, J. Mishler, S.C. Chao, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, Vol. 88, pp. 981-1007, 2011.
[11] V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources, Vol. 114, pp. 32-53, 2003.
[12] https://www.iea.org/reports/the-future-of-hydrogen
[13] https://en.wikipedia.org/wiki/Power-to-gas
[14] Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report,” Fuel Cell Today, 2011.
[15] K. Kordesch, G. Simader, “Fuel cells and their applications,” VCH Weinheim, 1996.
[16] https://en.wikipedia.org/wiki/Second_law_of_thermodynamics
[17] https://en.wikipedia.org/wiki/Proton-exchange_membrane
[18] https://en.wikipedia.org/wiki/Nafion
[19] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, Int. J. Hydrog. Energy, Vol. 35, pp. 9349-9384, 2010.
[20] https://www.materialsnet.com.tw/DocView.aspx?id=7084
[21] F. Gashoul, M.J. Parnian, S. Rowshanzamir, A new study on improving the physicochemical and electrochemical properties of SPEEK nanocomposite membranes for medium temperature proton exchange membrane fuel cells using different loading of zirconium oxide nanoparticles, Int. J. Hydrog. Energy, Vol. 42, pp. 590-602, 2017.
[22] Z.H. Shang, R. Wycisk, P. Pintauro, Electrospun Composite Proton-Exchange and Anion-Exchange Membranes for Fuel Cells, Energies, Vol. 14, 2021.
[23] https://www.materialsnet.com.tw/tech/TechView.aspx?id=325
[24] K. Wang, H.X. Chen, X.F. Zhang, Y.X. Tong, S.Q. Song, P. Tsiakaras, Y. Wang, Iron oxide@graphitic carbon core-shell nanoparticles embedded in ordered mesoporous N-doped carbon matrix as an efficient cathode catalyst for PEMFC, Appl. Catal. B, Vol. 264, 2020.
[25] H. Choi, O.H. Kim, M. Kim, H. Choe, Y.H. Cho, Y.E. Sung, Next-Generation Polymer-Electrolyte-Membrane Fuel Cells Using Titanium Foam as Gas Diffusion Layer, ACS Appl. Mater. Interfaces, Vol. 6, pp. 7665-7671, 2014.
[26] https://www.open.edu/openlearn/science-maths-technology/engineering-technology/manupedia/powder-forging/hot-pressing.
[27] A. Tang, L. Crisci, L. Bonville, J. Jankovic, An overview of bipolar plates in proton exchange membrane fuel cells, J. Renew. Sustain. Energy, Vol. 13, 2021.
[28] M. Marappan, K. Palaniswamy, T. Velumani, K.B. Chul, R. Velayutham, P. Shivakumar, S. Sundaram, Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs – Review, Chem Rec, Vol. 21, pp. 663-714, 2021.
[29] S. Porstmann, T. Wannemacher, W.G. Drossel, A comprehensive comparison of state-of-the-art manufacturing methods for fuel cell bipolar plates including anticipated future industry trends, J Manuf Process, Vol. 60, pp. 366-383, 2020.
[30] 黃鎮江,燃料電池,全華科技圖書股份有限公司,民國九十四年。
[31] Retrieved March 12, 2022, from https://wymetalmesh.en.made-in-china.com/product/yBQJzkUHvMRn/China-Titanium-Strainer-Woven-Wire-Mesh-with-Photocatalysis-Treatment.html
[32] Retrieved March 12, 2022, from https://www.fuelcellstore.com/sigracet-39-bb-carbon-paper-gdl
[33] T. Bystron, M. Vesely, M. Paidar, G. Papakonstantinou, K. Sundmacher, B. Bensmann, R.H. Rauschenbach, K. Bouzek, Enhancing PEM water electrolysis efficiency by reducing the extent of Ti gas diffusion layer passivation, J Appl Electrochem, Vol. 48, pp. 713-723, 2018.
[34] O.J. Murphy, A. Cisar, E. Clarke, Low-cost light weight high power density PEM fuel cell stack, Electrochim. Acta, Vol. 43, pp. 3829-3840, 1998.
[35] H. Choi, O.H. Kim, M. Kim, H. Choe, Y.H. Cho, Y.E. Sung, Next-Generation Polymer-Electrolyte-Membrane Fuel Cells Using Titanium Foam as Gas Diffusion Layer, ACS Appl. Mater. Interfaces, Vol. 6, pp. 7665-7671, 2014.
[36] Y.S Kang, S. Jo, D. Choi, J.Y. Kim, T. Park, S.J. Yoo, Pt-Sputtered Ti Mesh Electrode for Polymer Electrolyte Membrane Fuel Cells, INT J PR ENG MAN-GT, Vol. 6, pp. 271-279, 2019.
[37] J.B Ge, A. Higier, H.T. Liu, Effect of gas diffusion layer compression on PEM fuel cell performance, J. Power Sources, Vol. 159, pp. 922-927, 2006.
[38] S. Shimpalee, U. Beuscher, J.W. Van Zee, Analysis of GDL flooding effects on PEMFC performance, Electrochim. Acta, Vol. 52, pp. 6748-6754, 2007.
[39] V. Radhakrishnan, P. Haridoss, Effect of GDL compression on pressure drop and pressure distribution in PEMFC flow field, Int. J. Hydrog. Energy, Vol. 36, pp. 14823-14828, 2011.
[40] P Lettenmeier, S. Kolb, N. Sata, A. Fallisch, L. Zielke, S. Thiele, A.S. Gago, K.A. Friedrich, Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers, Energy Environ. Sci., Vol. 10, pp. 2525-2533, 2017.
[41] T. Chen, S.H. Liu, J.W. Zhang, M.N. Tang, Study on the characteristics of GDL with different PTFE content and its effect on the performance of PEMFC, Int. J. Heat Mass Transf., Vol. 128, pp. 1168-1174, 2019.
[42] A. Aladjem, M. Aucouturier, P. Lacombe, Anodic oxidation and stress corrosion cracking (SCC) of titanium alloys, J. Mater. Sci., Vol. 8, pp.787-792, 1973.
[43] Z. Tass, G. Horvath, V.K. Josepovits, Investigation of the titanium oxidation states by Auger electron spectroscopy, Surf. Sci., Vol. 331, pp. 272-276, 1995.
[44] I. Vaquilaab, L.I. Vergaraa, M.C.G. Passeggi Jr, R.A. Vidala, J. Ferrón, Chemical reactions at surfaces: titanium oxidation, Surf. Coat. Technol., Vol. 122, pp. 67-71, 1999.
[45] Y.T. Sul, C.B. Johansson, Y. Jeong, T. Albrektsson, The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes, Med Eng Phys, Vol. 23, pp. 329-346, 2001.
[46] N.K. Kuromoto, R.A. Simão, G.A. Soares, Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages, Mater Charact, Vol. 58, pp. 117-121, 2007.
[47] J.X. Zhang, F. Coms, S. Kumaraguru, Editors′ Choice-Necessity to Avoid Titanium Oxide as Electrocatalyst Support in PEM Fuel Cells: A Membrane Durability Study, J. Electrochem. Soc., Vol. 168, 2021.
[48] M. Takeuchi, Y. Abe, Y. Yoshida, Y. Nakayama, M. Okazaki, Y. Akagawa, Acid pretreatment of titanium implants, Biomaterials, Vol. 24, pp. 1821-1827, 2003.
[49] G.A. El-Mahdy, Formation and dissolution behavior of anodic oxide films on titanium in oxalic acid solutions, Rare Metal Mat Eng., Corros., Vol. 63, pp. 299-306, 2007.
[50] H. Xu, W. Yan, L. You, Effects of Various Acids Treatment on the Properties of Titanium Substrate, Vol. 40, pp. 1550-1554, 2011.
[51] M. Eikerling, A.A. Kornyshev, Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells, J. Electroanal. Chem., Vol. 475, pp. 107-123, 1999.
[52] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, AC impedance diagnosis of a 500W PEM fuel cell stack Part I:Stack impedance, J. Power Sources, Vol. 161, pp. 908-928, 2006.
[53] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi, AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes, Int. J. Hydrogen Energy, Vol. 32, pp. 4358-4364, 2007.
[54] R. Chen, Y. Qin, Q. Du, J Peng, Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell, SAE International by University of British Columbia, Monday, September 24, 2018.
[55] D. Chu, R.Z. Jiang, Comparative studies of polymer electrolyte membrane fuel cell stack and single cell, J. Power Sources, Vol. 80, pp. 226-234, 1999.
[56] https://www.researchgate.net/figure/Nyquist-plot-of-PEMFC-17_fig3_327732491.
[57] https://www.metrohm-autolab.com/Products/Echem/NSeriesFolder/PGSTAT302N
[58] U. Balachandran, N.G. Eror, Raman spectra of titanium dioxide, J Solid State Electrochem, Vol. 42, pp. 276-282, 1982
[59] S. Porto, P.A. Fleury, T.C. Damen, Raman Spectra of TiO2, MgF2, ZnF2, and MnF2, Phys. Rev. Vol. 154, pp. 522, 1967.
[60] B. Santara, P.K. Giri, K. Imakita, M. Fujii, Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons, Nanoscale, Vol. 5, pp. 5476-5488, 2013.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2022-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明