參考文獻 |
[1] https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf
[2] https://go-moea.tw/
[3] https://unfccc.saveoursky.org.tw/nir/2021nir/uploads/00_nir_full.pdf.
[4] https://zerotracker.net/
[5] https://www.iea.org/reports/net-zero-by-2050
[6] https://zh.wikipedia.org/wiki/%E9%87%8C%E7%A8%8B%E7%84%A6%E8%99%91
[7] https://www.carsifu.my/news/toyota-mirai-sets-guinness-world-records-title-with-1359km-zero-emission-journey
[8] http://www.ema.org.tw/monthlymgz/pdf/41/78-85.pdf
[9] https://iea.blob.core.windows.net/assets/ed5f4484-f556-4110-8c5c-4ede8bcba637/GlobalEVOutlook2021.pdf
[10] Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244–260.
[11] https://www.energy.gov/eere/fuelcells/hydrogen-production-pathways
[12] Balat, H., & Kırtay, E. (2010). Hydrogen from biomass – Present scenario and future prospects. International Journal of Hydrogen Energy, 35(14), 7416–7426.
[13] https://www.materialsnet.com.tw/DocView.aspx?id=7480
[14] B. Coelho, A.C. Oliveira, A. Mendes, (2010). Concentrated solar power for renewable electricity and hydrogen production from water—a review. Energy Environ, 10(3), 1398-1405.
[15] Martini, M., van den Berg, A., Gallucci, F., & van Sint Annaland, M. (2016b). Investigation of the process operability windows for Ca-Cu looping for hydrogen production with CO2 capture. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 303, 73–88.
[16] Dębek, R., Motak, M., Galvez, M. E., Da Costa, P., & Grzybek, T. (2017). Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition. Reaction Kinetics Mechanisms and Catalysis, 121(1), 185–208.
[17] Kyriakou, V., Garagounis, I., Vourros, A., Vasileiou, E., Manerbino, A., Coors, W. G., & Stoukides, M. (2016). Methane steam reforming at low temperatures in a BaZr0.7Ce0.2Y0.1O2.9 proton conducting membrane reactor. Applied Catalysis. B, Environmental, 186, 1–9.
[18] Kumar, A., Baldea, M., & Edgar, T. F. (2016). Real-time optimization of an industrial steam-methane reformer under distributed sensing. Control Engineering Practice, 54, 140–153.
[19] Jha, A., Jeong, D.-W., Lee, Y.-L., Jang, W.-J., Shim, J.-O., Jeon, K.-W., Rode, C. V., & Roh, H.-S. (2016). Chromium free high temperature water–gas shift catalyst for the production of hydrogen from waste derived synthesis gas. Applied Catalysis. A, General, 522, 21–31.
[20] Lin, K.-H., Lin, W.-H., Hsiao, C.-H., Chang, H.-F., & Chang, A. C.-C. (2012). Hydrogen production in steam reforming of glycerol by conventional and membrane reactors. International Journal of Hydrogen Energy, 37(18), 13770–13776.
[21] Sekine, Y., Yamagishi, K., Nogami, Y., Manabe, R., Oshima, K., & Ogo, S. (2016). Low temperature catalytic water gas shift in an electric field. Catalysis Letters, 146(8), 1423–1428.
[22] Balat, H., & Kırtay, E. (2010). Hydrogen from biomass – Present scenario and future prospects. International Journal of Hydrogen Energy, 35(14), 7416–7426.
[23] Bi, L., Boulfrad, S., & Traversa, E. (2014). Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chemical Society Reviews, 43(24), 8255–8270.
[24] D. Stolten, B. Emonts, Hydrogen Science and Engineering: Materials, Processes, Systems and Technology. John Wiley & Sons, 2016
[25] Bernholz, RWE′s former, current and possible future energy storage applications, 2018
[26] ITM, Hydrogen Refuelling Infrastructure. https://www.level-network.com/wp-content/uploads/2017/02/ITM-Power.pdf
[27] Hydrogen—Status and Possibilities, https://web.archive.org/web/20130916201553/http://www.bellona.org/filearchive/fil_Hydrogen_6-2002.pdf
[28] https://chuneng.bjx.com.cn/news/20210830/1173351.shtml
[29] https://fuelcellsworks.com/news/nel-launches-containerized-large-scale-pem-electrolyzer/
[30] https://www.powermag.com/shell-starts-up-10-mw-refhyne-hydrogen-electrolyzer-eyes-expansion-to-100-mw/
[31] https://www.airliquide.com/stories/industry/inauguration-worlds-largest-pem-electrolyzer-produce-decarbonized-hydrogen
[32] https://www.nsenergybusiness.com/news/air-liquide-quebec-pem-electrolyser/
[33] https://ore.catapult.org.uk/wp-content/uploads/2020/09/Solving-the-Integration-Challenge-ORE-Catapultr.pdf
[34] https://www.rechargenews.com/transition/linde-to-build-world-s-largest-electrolyser-to-produce-green-hydrogen/2-1-944080
[35] https://www.chemeurope.com/en/news/1169412/linde-to-build-own-and-operate-world-s-largest-pem-electrolyzer-for-green-hydrogen.html
[36] https://deepresource.wordpress.com/2021/01/16/linde-itm-building-24-mw-electrolyzer/
[37] Qin N, Brooker P. Hydrogen fueling stations infrastructure Cocoa, FL, USA:University of Central Florida; 2014. Semi-annual project report
[38] US Department of Energy. Hydrogen pipelines. 2018 Accessed https://www.energy.gov/eere/fuelcells/hydrogen-pipelines, Accessed date: 16 March 2018.
[39] H2 Tools. ‘international hydrogen fuelling stations’. Pacific Northwest National Laboratory; 2018.
[40] https://www.azom.com/article.aspx?ArticleID=14630
[41] https://www.azom.com/article.aspx?ArticleID=11683
[42] Onda, K., Murakami, T., Hikosaka, T., Kobayashi, M., Notu, R., & Ito, K. (2002). Performance analysis of polymer-electrolyte water electrolysis cell at a small-unit test cell and performance prediction of large stacked cell. Journal of the Electrochemical Society, 149(8), A1069. https://doi.org/10.1149/1.1492287
[43] Choi, P. (2004). A simple model for solid polymer electrolyte (SPE) water electrolysis. Solid State Ionics, 175(1–4), 535–539. https://doi.org/10.1016/j.ssi.2004.01.076
[44] Marangio, F., Santarelli, M., & Cali, M. (2009). Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production. International Journal of Hydrogen Energy, 34(3), 1143–1158.
[45] Lebbal, M. E., & Lecœuche, S. (2009). Identification and monitoring of a PEM electrolyser based on dynamical modelling. International Journal of Hydrogen Energy, 34(14), 5992–5999.
[46] Abdin, Z., Webb, C. J., & Gray, E. M. (2015). Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell. International Journal of Hydrogen Energy, 40(39), 13243–13257.
[47] Nafeh, A. E.-S. A. (2011). Hydrogen production from a PV/PEM electrolyzer system using a neural-network-based MPPT algorithm. International Journal of Numerical Modelling Electronic Networks Devices and Fields, 24(3), 282–297.
[48] Fragiacomo, P., & Genovese, M. (2020). Developing a mathematical tool for hydrogen production, compression and storage. International Journal of Hydrogen Energy, 45(35), 17685–17701.
[49] Fragiacomo, P., & Genovese, M. (2020). Developing a mathematical tool for hydrogen production, compression and storage. International Journal of Hydrogen Energy, 45(35), 17685–17701.
[50] Lin, Z., Ou, S., Elgowainy, A., Reddi, K., Veenstra, M., & Verduzco, L. (2018). A method for determining the optimal delivered hydrogen pressure for fuel cell electric vehicles. Applied Energy, 216, 183–194.
[51] Rothuizen, E., Mérida, W., Rokni, M., & Wistoft-Ibsen, M. (2013). Optimization of hydrogen vehicle refueling via dynamic simulation. International Journal of Hydrogen Energy, 38(11), 4221–4231.
[52] Rothuizen, E., & Rokni, M. (2014). Optimization of the overall energy consumption in cascade fueling stations for hydrogen vehicles. International Journal of Hydrogen Energy, 39(1), 582–592.
[53] Chen, H., Zheng, J., Liu, Y., Xu, P., Li, L., Liu, P., & Bie, H. (2008). Optimization of hydrogen utilization ratio in hydrogen filling stations. Volume 1: Codes and Standards.
[54] Guo, J., Xing, L., Hua, Z., Gu, C., & Zheng, J. (2016). Optimization of compressed hydrogen gas cycling test system based on multi-stage storage and self-pressurized method. International Journal of Hydrogen Energy, 41(36), 16306–16315
[55] Xiao, L., Chen, J., Wu, Y., Zhang, W., Ye, J., Shao, S., & Xie, J. (2021). Effects of pressure levels in three-cascade storage system on the overall energy consumption in the hydrogen refueling station. International Journal of Hydrogen Energy.
[56] Fuel Cell Standards Committee. (2020). Fueling protocols for light duty gaseous hydrogen surface vehicles. SAE International.
[57] Reddi, K., Elgowainy, A., Rustagi, N., & Gupta, E. (2017). Impact of hydrogen SAE J2601 fueling methods on fueling time of light-duty fuel cell electric vehicles. International Journal of Hydrogen Energy, 42(26), 16675–16685.
[58] Chochlidakis, C.-. G., & Rothuizen, E. D. (2020). Overall efficiency comparison between the fueling methods of SAEJ2601 using dynamic simulations. International Journal of Hydrogen Energy, 45(20), 11842–11854.
[59] Omdahl, N. H. (2014). Modeling of a hydrogen refueling station. NTNU.
[60] Elgowainy, A., Reddi, K., Lee, D.-Y., Rustagi, N., & Gupta, E. (2017). Techno-economic and thermodynamic analysis of pre-cooling systems at gaseous hydrogen refueling stations. International Journal of Hydrogen Energy, 42(49), 29067–29079.
[61] Talpacci, E., Reuβ, M., Grube, T., Cilibrizzi, P., Gunnella, R., Robinius, M., & Stolten, D. (2018). Effect of cascade storage system topology on the cooling energy consumption in fueling stations for hydrogen vehicles. International Journal of Hydrogen Energy, 43(12), 6256–6265.
[62] Riedl, S. M. (2020). Development of a hydrogen refueling station design tool. International Journal of Hydrogen Energy, 45(1), 1–9.
[63] Reddi, K., Elgowainy, A., Rustagi, N., & Gupta, E. (2017a). Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen. International Journal of Hydrogen Energy, 42(34), 21855–21865.
[64] http://www.me.nchu.edu.tw/lab/ICE/www/Courses/thermalfluid_2/chap_3_refrigeration.pdf
[65] Marangio, F., Pagani, M., Santarelli, M., & Calì, M. (2011). Concept of a high pressure PEM electrolyser prototype. International Journal of Hydrogen Energy, 36(13), 7807–7815. |