博碩士論文 109323078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.145.155.149
姓名 陳佳煒(Chia-Wei Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 質子交換膜燃料電池之微孔層凹槽結構與參數靈敏度模擬分析
(Simulation Analysis of Microporous Layer Grooves Structure and Parameters Sensitivity of Proton Exchange Membrane Fuel Cell)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 質子交換膜燃料電池(PEMFC)是一種將反應物的化學能直接轉換成電能的電化學裝置,PEMFC可以透過減少觸媒層鉑金(Pt)使用量以降低電池生產成本並同時保持最大功率密度來進行大規模生產和商業化,當Pt膜厚度超過最佳值時,氣體傳輸良好的區域(靠近氣體擴散層的一側)與質子傳輸良好的區域(靠近質子交換膜的一側)分離,因此電流密度和功率密度隨膜厚度的新增而下降。本研究是藉由COMSOL軟體來模擬質子交換膜燃料電池,使用多重物理量耦合的方式,建立三維燃料電池模型,並以此模型為基準,來分別模擬兩相的單電池。而在模擬的區域則包含了陰極和陽極兩端的流道、氣體擴散層、微孔層、觸媒層以及質子交換膜。
本研究藉由COMSOL Multiphysic在微孔層表面上製造不同週期性凹槽,以增加Pt沉積的有效表面積,從而減少Pt膜厚度,透過改變凹槽的形狀、寬度以及深度,討論對於質子交換膜燃料電池性能影響。研究結果顯示,在40 µm凹槽深度具有較高的電流密度,凹槽越深其PEM燃料電池性能越好。而在不同凹槽形狀中使用方形週期性凹槽且深度及寬度皆為40 µm的情況,0.6 V下的電流密度較無凹槽提升約26 %。
本研究同時對於金屬多孔材流場設計的質子交換膜燃料電池進行參數靈敏度分析。該模型耦合了多組分反應物和液態水的兩相流、物種傳輸、電化學反應、質子和電子傳輸。此項研究參數可以分為各層(氣體擴散層、微孔層、觸媒層以及質子交換膜)結構或傳輸參數(曲折度、孔隙率、滲透率及導電率),以及電化學參數(陽極和陰極交換電流密度、陽極和陰極轉移係數),並且進行單個參數不同數值模擬,得出不同參數對電池極化曲線的影響,分析影響燃料電池性能的因素。
摘要(英) Proton exchange membrane fuel cell (PEMFC) is an electrochemical device that directly converts the chemical energy of reactants into electrical energy. Platinum (Pt) used as a catalyst layer in the PEMFC increases the cost of the fuel cell. This study aims to increase the higher surface area of the catalyst layer with lower catalyst loading. So that the cost of the PEMFC could decrease. When the thickness of Pt membrane exceeds the optimal value, the region with good gas transmission (near the gas diffusion layer) is separated from the region with good proton transmission (near the proton exchange membrane), so the current density and power density decrease with the increase of membrane thickness. In this study, the proton exchange membrane fuel cell is simulated by COMSOL software, and a three-dimensional fuel cell model is established by coupling multiple physical quantities happen in the actual (physical) functioning of PEMFC. The model couples the two-phase flow of multicomponent reactants and liquid water, species transport, electrochemical reaction, proton and electron transport. Based on this model, single cell is simulated with liquid and gaseous media flow in the porous solid system respectively. The simulated region includes the flow channels at both ends of cathode and anode, gas diffusion layer, microporous layer, catalyst layer and proton exchange membrane. In this study, COMSOL multiphysics was used to make different periodic grooves on the surface of cathode and anode microporous layer to increase the effective surface area of Pt deposition, so as to reduce the thickness of Pt membrane. The effects of groove shape, and depth on the performance of PEMFC is investigated. Groove depth increases the performance of PEMFC. The research results show that the groove depth of 40 µm has the highest current density, the better performance of PEM fuel cell. The PEMFC current density is 26% higher at 0.6 V for a square periodic groove of 40 µm. At the same time, the parametric sensitivity analysis of PEMFC with porous flow field design is carried out. The model couples the two-phase flow of multicomponent reactants and liquid water, species transport, electrochemical reaction, proton and electron transport. The research parameters can be divided into the structure or transmission parameters (tortuosity, porosity, permeability and conductivity) of each layer (gas diffusion layer, microporous layer, catalyst layer and proton exchange membrane) and electrochemical parameters (anode and cathode exchange current density, anode and cathode transfer coefficient). Different numerical simulations of single parameters are carried out to obtain the influence of all parameters on the polarization curve of the cell and analyze the factors affecting the performance of the fuel cell. This study helps in decreasing the cost of PEMFC and increasing the performance of PEMFC with optimum Pt thickness and microporous layer groove design.
關鍵字(中) ★ 微孔層
★ 凹槽設計
★ 計算流體力學
★ 數值分析
★ 質子交換膜燃料電池
★ COMSOL Multiphysics
關鍵字(英) ★ Microporous layer (MPL)
★ Groove design
★ CFD
★ Numerical analysis
★ Proton exchange membrane fuel cell
★ COMSOL Multiphysics
論文目次 目錄
摘要 I
ABSTRACT III
誌謝 VI
目錄 VII
圖目錄 XI
表目錄 XVIII
第一章 緒論 1
1.1 研究背景 1
1.2 燃料電池介紹 2
1.2.1 燃料電池種類 3
1.2.2 質子交換膜燃料電池工作原理 5
1.2.3 質子交換膜燃料電池之組成結構 8
1.2.4 質子交換膜燃料電池之極化現象 10
1.3 研究動機與目的 14
1.3.1 研究動機 14
1.3.2 研究目的 14
第二章 文獻回顧 16
2.1 質子交換膜燃料電池 16
2.2 金屬多孔材之研究 17
2.3 微孔層凹槽研究 19
2.4 計算流體力學應用於質子交換膜燃料電池 21
第三章 理論與計算模式 26
3.1 質子交換膜燃料電池電化學反應 26
3.2 基本假設 27
3.3 統御方程式 27
3.3.1 質量守恆方程式 28
3.3.2 動量守恆方程式 28
3.3.3 能量守恆方程式 29
3.3.4 物種傳輸方程式 30
3.3.5 Bruggeman 關係式 31
3.3.6 Butler-Volmer 方程式 32
3.3.7 電流守恆方程式 33
3.3.8 膜電極質子導電率 35
第四章 模型建立與條件設定 37
4.1 質子交換膜燃料電池CFD模擬分析 37
4.1.1 幾何模型介紹 37
4.1.2 材料參數 40
4.1.3 物理參數 41
4.1.4 邊界條件 42
4.1.5 網格收斂性分析 43
4.2 MPL凹槽模擬分析 45
4.2.1 凹槽形狀 46
4.2.2 凹槽寬度 47
4.2.3 凹槽深度 49
4.3參數靈敏度模擬分析 55
4.3.1 幾何參數 56
4.3.2 結構參數與傳輸參數 57
4.3.3 電化學參數 60
4.3.4 實驗操作參數 61
第五章 結果與討論 62
5.1 質子交換膜燃料電池CFD模擬分析 62
5.1.1 文獻驗證 62
5.1.2 低溫質子交換膜燃料電池模擬分析 67
5.2 MPL凹槽模擬分析 67
5.2.1 凹槽形狀 67
5.2.2 凹槽寬度 69
5.2.3 凹槽深度 75
5.2.4 有無凹槽比較 92
5.3 參數靈敏度模擬分析 95
5.3.1 幾何參數 95
5.3.2 結構參數與傳輸參數 104
5.3.3 電化學參數 125
5.3.4 實驗操作參數 129
第六章 結論與未來建議 133
6.1 結論 133
6.2 未來建議 134
參考文獻 135
參考文獻 [1] 王智薇,「淺談新興能源科技產業─氫能與燃料電池」,產經資訊,2008。
[2] R. O’Hayre, S.W. Cha, W. Colella, F.B. Prinz, “Fuel cell fundamentals”, John Wiley & Sons, 2005.
[3] Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report,” Fuel Cell Today, 2011.
[4] 趙中興,「燃料電池基礎」,全華圖書,2008 。
[5] Y Wang, K S. Chen, J Mishler, S C Cho, X C Adroher, “A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research”, Appl. Energy, 88, pp. 981 1007, 2011.
[6] K. Kordesch, G. Simader, “Fuel cells and their applications,” VCH Weinheim, 1996.
[7] https://en.wikipedia.org/wiki/Nafion.
[8] 黃鎮江,燃料電池,全華科技圖書股份有限公司,民國九十四年。
[9] C.Spiegel et al., Designing and Building Fuel Cells Library of Congress Cataloging-in-Publication Data. 2007.
[10] O.J. Murphy, A. Cisar, E. Clarke, “Low-cost light weight high power density PEM fuel cell stack”, Elsevier Science, Vol. 43, pp. 3829-3840, 1998.
[11] J.L. Jespersen, E. Schaltzb, S.K. Kærb, “Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell”, Journal Power Sources, Vol. 191, pp. 289-296, 2009.
[12] D. Chu, R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell”, Journal of Power Source, Vol. 80, pp. 226-234, 1999.
[13] P. Rodatz, F. Büchi, C. Onder, L. Guzzella, “Operational aspects of a large PEFC stack under practical conditions”, Journal of Power Sources, Vol. 128, pp. 208-217, 2004.
[14] W. Schmittinger, A. Vahidi, “A review of the main parameters influencing long-term performance and durability of PEM fuel cells”, Journal of Power Sources, Vol. 180, pp. 1-14, 2008.
[15] J.J. Hwang, G.J. Hwang, R.H. Yeh, C.H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams”, Journal Heat Transfer, Vol. 124, pp. 120-129, 2002.
[16] M. Medraj, E. Baril, V. Loya, L.P. Lefebvre, “The effect of microstructure on the permeability of metallic foams”, Journal of Material Science, Vol. 42, pp. 4372-4383, 2007.
[17] C.J. Tseng, B.T. Tsai, Z.S. Liu, T.C. Cheng, W.C. Chang and S.K. Lo, “A PEM fuel cell with metal foam as flow distributor”, Energy Conversion and Management, Vol. 62, pp. 14-21, 2012.
[18] B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wang, C.I. Lee, C.C. Yang and S.K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor”, International Journal of Hydrogen Energy, Vol. 37, pp. I3060-I3066, 2012.
[19] M. S. Hossain, B. Shabani, “Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 295, pp. 275-291, 2015
[20] M. Shao, A. Peles, K. Shoemaker, “Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Lett”, Vol. 11, pp. 3714−3719, 2011.
[21] N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC anode with very low Pt loadings using pulsed laser deposition”, Electrochem. Solid-State Lett., 6, 125-128, (2003).
[22] 林冠任,「利用脈衝雷射沉積技術成長PEMFC鉑奈米顆粒觸媒」,國立中央大學,碩士論文,2015年。
[23] H. Qayyum, C. J. Tseng, T. W. Huang, S. Y. Chen, “Pulsed Laser Deposition of Platinum Nanoparticles as a Catalyst for High-Performance PEM Fuel Cells”, Catalysts, Vol. 6, pp. 180, 2016.
[24] 黃亭維,「應用脈衝雷射技術製備高穩定性與高性能之鉑奈米顆粒並應用於燃料電池觸媒層」,國立中央大學,碩士論文,2016年。
[25] J. Iglesia, C. C. Lang, Y. M. Chen, S. Y. Chen, C. J. Tseng, “Raising the maximum power density of nanoporous catalyst film-based polymer-electrolyte-membrane fuel cells by laser micro-machining of the gas diffusion layer”, Journal of Power Sources, Vol. 436, pp. 226886, 2019.
[26] Dutta, S.S.S., NUMERICAL PREDICTION OF TEMPERATURE DISTRIBUTION IN PEM FUEL CELLS. Numerical Heat Transfer, Part A: Applications, 2000. 38(2): p. 111-128.
[27] Mazumder, S. and J.V. Cole, Rigorous 3-D Mathematical Modeling of PEM Fuel Cells. Journal of the Electrochemical Society, 2003. 150(11): p. A1503.
[28] Berning, T. and N. Djilali, Three-dimensional computational analysis of transport phenomena in a PEM fuel cell—a parametric study. Journal of Power Sources, 2003. 124(2): p. 440-452
[29] Meng, H., A two-phase non-isothermal mixed-domain PEM fuel cell model and its application to two-dimensional simulations. Journal of Power Sources, 2007. 168(1): p. 218-228.
[30] Ye, Q. and T.V. Nguyen, Three-Dimensional Simulation of Liquid Water Distribution in a PEMFC with Experimentally Measured Capillary Functions. Journal of Electrochemical Society, 2007. 154(12): p. B1242-B1251.
[31] Berning, T., A Three-dimensional, Two-fluid Model of PEM Fuel Cell Cathodes. ECS Transactions, 2008. 16(2): p. 23-34.
[32] Harvey, D., J.G. Pharoah, and K. Karan, A comparison of different approaches to modelling the PEMFC catalyst layer. Journal of Power Sources, 2008. 179(1): p. 209-219.
[33] Berning, T., M. Odgaard, and S.K. Kær, A Computational Analysis of Multiphase Flow Through PEMFC Cathode Porous Media Using the Multifluid Approach. Journal of The Electrochemical Society, 2009. 156(11): p. B1301-B1311.
[34] Dawes, J.E., et al., Three-dimensional CFD modelling of PEM fuel cells: An investigation into the effects of water flooding. Chemical Engineering Science, 2009. 64(12): p. 2781-2794.
[35] Yuan, W., et al., Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance. Renewable Energy, 2010. 35(3): p. 656-666.
[36] Golpaygan, A., A. Sarchami, and N. Ashgriz, Three-dimensional multiphase flow model to study channel flow dynamics of PEM fuel cells. 2011. 35(13): p. 1188-1199.
[37] Inamuddin, et al., Three dimensional numerical investigations for the effects of gas diffusion layer on PEM fuel cell performance. Renewable Energy, 2011. 36(2): p. 529-535.
[38] Ferreira, R.B., et al., 1D+3D two-phase flow numerical model of a proton exchange membrane fuel cell. Applied Energy, 2017. 203: p. 474-495.
[39] Zhang, G. and K. Jiao, Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model. Energy Conversion and Management, 2018. 176: p. 409-421.
[40] Havaej, P., et al., A numerical modeling study on the influence of catalyst loading distribution on the performance of Polymer Electrolyte Membrane Fuel Cell. International Journal of Hydrogen Energy, 2018. 43(21): p. 10031-10047.
[41] Li, Y., et al., Modeling of PEM fuel cell with thin MEA under low humidity operating condition. Applied Energy, 2019: p. 1513-1527.
[42] Thosar, A.U., et al., Comprehensive analytical model for polarization curve of a PEM fuel cell and experimental validation. Chemical Engineering Science, 2019. 206: p. 96-117.
[43] Zhang, G., et al., Investigation of current density spatial distribution in PEM fuel cells using a comprehensively validated multi-phase non-isothermal model. International Journal of Heat and Mass Transfer, 2020. 150: p. 119294.
[44] X. Peng and Y. Boming, “Developping a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry,” Advances in Water Resources, Vol. 31,pp. 74-81, 2008.
[45] C. Y. Wang S um, and K. S. Chen,“ Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells,” Journal of Electrochemical Society, Vol. 147, pp. 4485-4493, 2000.
[46] U. Pasaogullari, C.Y. Wang, Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel, Electrochim. Acta 49(2004) 4359-4369.
[47] H. Meng, Numerical studies of liquid water behaviors in PEM fuel cell cathode considering transport across different porous layers, Int. J. Hydrogen Energy, 35(11) (2010) 5569-5579.
[48] T. F. Cao, H. Lin, L. Chen, Y. L. He, W. Q. Tao, Numerical investigation of the coupled water and thermal management in PEM fuel cell, Appl. Energy 112 (2013) 1115-1125.
[49] L. Yao, J. Peng, J. b. Zhang, Y. J. Zhang, Numerical investigation of cold-start behavior of polymer electrolyte fuel cells in the presence of super-cooled water, Int. J. Hydrogen Energy, 43(2018) 15505-15520.
[50] Wang, Y., Wang, S., Liu, S., Li, H., & Zhu, K. (2019). Three-dimensional simulation of a PEM fuel cell with experimentally measured through-plane gas effective diffusivity considering Knudsen diffusion and the liquid water effect in porous electrodes. Electrochimica Acta, 318, 770–782.
[51] T. A. Zawodzinski, T. E. Springer and S. Gottesfeld, “Polymer Electrolyte Fuel Cell Model,” Journal of Electrochemical Society, Vol. 138, pp. 2334- 2342, 1991.
[52] J. V. Cole and S. Mazumder, “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells,” Journal of Electrochemical Society, Vol. 150, pp. A1503- A1509, 2003.
[53] J. Divisek, A. A. Kulikovsky and A. A. Kornyshev, “Modeling the Cathode Compartment of Polymer Electrolyte Fuel Cells-Dead and Active Reaction 58 Zones,” Journal of Electrochemical Society, Vol. 146, pp. 3981-3991, 1999.
[54] Li, S., & Sundén, B. Three-dimensional modeling and investigation of high temperature proton exchange membrane fuel cells with metal foams as flow distributor. International Journal of Hydrogen Energy, 42(44), 27323–27333.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2022-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明