參考文獻 |
[1] 王智薇,「淺談新興能源科技產業─氫能與燃料電池」,產經資訊,2008。
[2] R. O’Hayre, S.W. Cha, W. Colella, F.B. Prinz, “Fuel cell fundamentals”, John Wiley & Sons, 2005.
[3] Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report,” Fuel Cell Today, 2011.
[4] 趙中興,「燃料電池基礎」,全華圖書,2008 。
[5] Y Wang, K S. Chen, J Mishler, S C Cho, X C Adroher, “A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research”, Appl. Energy, 88, pp. 981 1007, 2011.
[6] K. Kordesch, G. Simader, “Fuel cells and their applications,” VCH Weinheim, 1996.
[7] https://en.wikipedia.org/wiki/Nafion.
[8] 黃鎮江,燃料電池,全華科技圖書股份有限公司,民國九十四年。
[9] C.Spiegel et al., Designing and Building Fuel Cells Library of Congress Cataloging-in-Publication Data. 2007.
[10] O.J. Murphy, A. Cisar, E. Clarke, “Low-cost light weight high power density PEM fuel cell stack”, Elsevier Science, Vol. 43, pp. 3829-3840, 1998.
[11] J.L. Jespersen, E. Schaltzb, S.K. Kærb, “Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell”, Journal Power Sources, Vol. 191, pp. 289-296, 2009.
[12] D. Chu, R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell”, Journal of Power Source, Vol. 80, pp. 226-234, 1999.
[13] P. Rodatz, F. Büchi, C. Onder, L. Guzzella, “Operational aspects of a large PEFC stack under practical conditions”, Journal of Power Sources, Vol. 128, pp. 208-217, 2004.
[14] W. Schmittinger, A. Vahidi, “A review of the main parameters influencing long-term performance and durability of PEM fuel cells”, Journal of Power Sources, Vol. 180, pp. 1-14, 2008.
[15] J.J. Hwang, G.J. Hwang, R.H. Yeh, C.H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams”, Journal Heat Transfer, Vol. 124, pp. 120-129, 2002.
[16] M. Medraj, E. Baril, V. Loya, L.P. Lefebvre, “The effect of microstructure on the permeability of metallic foams”, Journal of Material Science, Vol. 42, pp. 4372-4383, 2007.
[17] C.J. Tseng, B.T. Tsai, Z.S. Liu, T.C. Cheng, W.C. Chang and S.K. Lo, “A PEM fuel cell with metal foam as flow distributor”, Energy Conversion and Management, Vol. 62, pp. 14-21, 2012.
[18] B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wang, C.I. Lee, C.C. Yang and S.K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor”, International Journal of Hydrogen Energy, Vol. 37, pp. I3060-I3066, 2012.
[19] M. S. Hossain, B. Shabani, “Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 295, pp. 275-291, 2015
[20] M. Shao, A. Peles, K. Shoemaker, “Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Lett”, Vol. 11, pp. 3714−3719, 2011.
[21] N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC anode with very low Pt loadings using pulsed laser deposition”, Electrochem. Solid-State Lett., 6, 125-128, (2003).
[22] 林冠任,「利用脈衝雷射沉積技術成長PEMFC鉑奈米顆粒觸媒」,國立中央大學,碩士論文,2015年。
[23] H. Qayyum, C. J. Tseng, T. W. Huang, S. Y. Chen, “Pulsed Laser Deposition of Platinum Nanoparticles as a Catalyst for High-Performance PEM Fuel Cells”, Catalysts, Vol. 6, pp. 180, 2016.
[24] 黃亭維,「應用脈衝雷射技術製備高穩定性與高性能之鉑奈米顆粒並應用於燃料電池觸媒層」,國立中央大學,碩士論文,2016年。
[25] J. Iglesia, C. C. Lang, Y. M. Chen, S. Y. Chen, C. J. Tseng, “Raising the maximum power density of nanoporous catalyst film-based polymer-electrolyte-membrane fuel cells by laser micro-machining of the gas diffusion layer”, Journal of Power Sources, Vol. 436, pp. 226886, 2019.
[26] Dutta, S.S.S., NUMERICAL PREDICTION OF TEMPERATURE DISTRIBUTION IN PEM FUEL CELLS. Numerical Heat Transfer, Part A: Applications, 2000. 38(2): p. 111-128.
[27] Mazumder, S. and J.V. Cole, Rigorous 3-D Mathematical Modeling of PEM Fuel Cells. Journal of the Electrochemical Society, 2003. 150(11): p. A1503.
[28] Berning, T. and N. Djilali, Three-dimensional computational analysis of transport phenomena in a PEM fuel cell—a parametric study. Journal of Power Sources, 2003. 124(2): p. 440-452
[29] Meng, H., A two-phase non-isothermal mixed-domain PEM fuel cell model and its application to two-dimensional simulations. Journal of Power Sources, 2007. 168(1): p. 218-228.
[30] Ye, Q. and T.V. Nguyen, Three-Dimensional Simulation of Liquid Water Distribution in a PEMFC with Experimentally Measured Capillary Functions. Journal of Electrochemical Society, 2007. 154(12): p. B1242-B1251.
[31] Berning, T., A Three-dimensional, Two-fluid Model of PEM Fuel Cell Cathodes. ECS Transactions, 2008. 16(2): p. 23-34.
[32] Harvey, D., J.G. Pharoah, and K. Karan, A comparison of different approaches to modelling the PEMFC catalyst layer. Journal of Power Sources, 2008. 179(1): p. 209-219.
[33] Berning, T., M. Odgaard, and S.K. Kær, A Computational Analysis of Multiphase Flow Through PEMFC Cathode Porous Media Using the Multifluid Approach. Journal of The Electrochemical Society, 2009. 156(11): p. B1301-B1311.
[34] Dawes, J.E., et al., Three-dimensional CFD modelling of PEM fuel cells: An investigation into the effects of water flooding. Chemical Engineering Science, 2009. 64(12): p. 2781-2794.
[35] Yuan, W., et al., Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance. Renewable Energy, 2010. 35(3): p. 656-666.
[36] Golpaygan, A., A. Sarchami, and N. Ashgriz, Three-dimensional multiphase flow model to study channel flow dynamics of PEM fuel cells. 2011. 35(13): p. 1188-1199.
[37] Inamuddin, et al., Three dimensional numerical investigations for the effects of gas diffusion layer on PEM fuel cell performance. Renewable Energy, 2011. 36(2): p. 529-535.
[38] Ferreira, R.B., et al., 1D+3D two-phase flow numerical model of a proton exchange membrane fuel cell. Applied Energy, 2017. 203: p. 474-495.
[39] Zhang, G. and K. Jiao, Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model. Energy Conversion and Management, 2018. 176: p. 409-421.
[40] Havaej, P., et al., A numerical modeling study on the influence of catalyst loading distribution on the performance of Polymer Electrolyte Membrane Fuel Cell. International Journal of Hydrogen Energy, 2018. 43(21): p. 10031-10047.
[41] Li, Y., et al., Modeling of PEM fuel cell with thin MEA under low humidity operating condition. Applied Energy, 2019: p. 1513-1527.
[42] Thosar, A.U., et al., Comprehensive analytical model for polarization curve of a PEM fuel cell and experimental validation. Chemical Engineering Science, 2019. 206: p. 96-117.
[43] Zhang, G., et al., Investigation of current density spatial distribution in PEM fuel cells using a comprehensively validated multi-phase non-isothermal model. International Journal of Heat and Mass Transfer, 2020. 150: p. 119294.
[44] X. Peng and Y. Boming, “Developping a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry,” Advances in Water Resources, Vol. 31,pp. 74-81, 2008.
[45] C. Y. Wang S um, and K. S. Chen,“ Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells,” Journal of Electrochemical Society, Vol. 147, pp. 4485-4493, 2000.
[46] U. Pasaogullari, C.Y. Wang, Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel, Electrochim. Acta 49(2004) 4359-4369.
[47] H. Meng, Numerical studies of liquid water behaviors in PEM fuel cell cathode considering transport across different porous layers, Int. J. Hydrogen Energy, 35(11) (2010) 5569-5579.
[48] T. F. Cao, H. Lin, L. Chen, Y. L. He, W. Q. Tao, Numerical investigation of the coupled water and thermal management in PEM fuel cell, Appl. Energy 112 (2013) 1115-1125.
[49] L. Yao, J. Peng, J. b. Zhang, Y. J. Zhang, Numerical investigation of cold-start behavior of polymer electrolyte fuel cells in the presence of super-cooled water, Int. J. Hydrogen Energy, 43(2018) 15505-15520.
[50] Wang, Y., Wang, S., Liu, S., Li, H., & Zhu, K. (2019). Three-dimensional simulation of a PEM fuel cell with experimentally measured through-plane gas effective diffusivity considering Knudsen diffusion and the liquid water effect in porous electrodes. Electrochimica Acta, 318, 770–782.
[51] T. A. Zawodzinski, T. E. Springer and S. Gottesfeld, “Polymer Electrolyte Fuel Cell Model,” Journal of Electrochemical Society, Vol. 138, pp. 2334- 2342, 1991.
[52] J. V. Cole and S. Mazumder, “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells,” Journal of Electrochemical Society, Vol. 150, pp. A1503- A1509, 2003.
[53] J. Divisek, A. A. Kulikovsky and A. A. Kornyshev, “Modeling the Cathode Compartment of Polymer Electrolyte Fuel Cells-Dead and Active Reaction 58 Zones,” Journal of Electrochemical Society, Vol. 146, pp. 3981-3991, 1999.
[54] Li, S., & Sundén, B. Three-dimensional modeling and investigation of high temperature proton exchange membrane fuel cells with metal foams as flow distributor. International Journal of Hydrogen Energy, 42(44), 27323–27333. |