博碩士論文 109323076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.149.239.1
姓名 李育誠(Yu-Cheng Li)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 流體對可侵蝕傾斜床夾帶運移行為之研究
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著近年全球氣候的不穩定的變化,世界各地頻頻傳出,因為強大的風雨造成的坡
地災害,當土石的顆粒受到內外營力作用時,發生劇烈的崩塌流動行為時,亦會對在原
坡度上的表面土石進行侵蝕及夾帶現象,此現象會造成坡地的災害越加嚴重。對於自然
環境與人類社會造成生態、自然環境、經濟、生命安全的嚴重損失。為此本研究透過實
驗的形式,觀察顆粒崩塌的流動行為。
本研究主要是透過實驗來探討當不同傾斜坡度與水流量對於顆粒床層的崩塌並針
對侵蝕與沉積現象進行討論。實驗透過建置開放式二維傾斜流槽,利用手動調整流槽中
的傾斜角度並以PLC 控制入水的流量大小,使水流進入傾斜的顆粒床層區。實驗使用的
顆粒是用4mm 白色的氧化鋁珠,透過高速攝影機拍攝後進行影像處理來分析顆粒在流
槽中的流動現象並使用PIV 分析流體流動時的速度場分布觀察固液兩相中的流動。實驗
結果主要分析了侵蝕床與沉積床部分,分別是顆粒體受到水流影響後對於侵蝕床中的侵
蝕面積大小、侵蝕深度、侵蝕的距離隨時間的變化和沉積床中顆粒體受到水流夾帶後將
顆粒體搬移至沉積床的沉積面積隨時間變化,沉積深度在不同流槽位置的變化關係。並
透過最終侵蝕面積分析了不同傾斜角及流量影響下的分布情形與侵蝕率比較,還闡述無
因次化最終的侵蝕面積與位能損失關係圖,並以指數函數進行分布關係的擬合。
由實驗的結果得知,當水流量及傾斜角越大時,皆會對可侵蝕顆粒床與沉積都會有
顯著的改變,當水流量越大時對於侵蝕的面積與沉積面積都是呈現正相關的分布。這是
由於水流量的變化會影響顆粒體間原有的摩擦阻力,使顆粒原有的結構受到破壞進而導
致嚴重的侵蝕與夾帶效應,進而影響沉積床中的沉積面積分布。由侵蝕的距離與流槽中
不同位置的侵蝕深度分布發現,當水流量與傾斜的增加也會使侵蝕的作用越加的明顯。
而由顆粒床中的侵蝕率與位能損失變化發現,當傾斜角越大時對於能量的損失會越加的
劇烈。
摘要(英) With the unstable changes in the global climate in recent years, natural disasters have been
frequent reports from all over the world. Because of the slope disaster caused by strong wind
and rain, when the soil and rock particles are subjected to internal and external forces, the
violent collapse and flow behavior will also affect the original slope. Erosion and entrainment
of the surface soil and rock on the surface will cause more serious disasters on slopes. It has
caused serious losses to the natural environment and human society in terms of ecology, natural
environment, the economy, and life safety. For this reason, this study observes the flow behavior
of particle collapse using experiments.
This study mainly explores the collapse of the particle bed with different slope gradients
and water flow through experiments and discusses the erosion and deposition phenomena. In
the experiment, an open two-dimensional inclined flume was built, the inclined angle in the
flume was adjusted manually, and the flow discharge of the incoming water was controlled by
PLC, so that the water flow entered the inclined granular bed area. The particles used in the
experiment are 4mm white alumina beads, which are photographed by a high-speed camera and
then processed by image processing to analyze the flow phenomenon of the particles in the flow
tank and use PIV to analyze the velocity field distribution of the fluid flow to observe the solidliquid
two-phase flow. The experimental results mainly analyze the erosive bed and the
depositional bed, respectively, after the particles are affected by the water flow, the erosion area
size, erosion depth, and erosion distance in the eroded bed change with time, and the particles
in the sedimentary bed are entrained by the water flow. The deposition area of the particles
moved to the depositional bed changes with time, and the relationship between the deposition
depth at different trough positions. Through the final erosion area, the distribution situation and
erosion rate under the influence of different inclination angles and flow rates are analyzed, the
relationship between the dimensionless final erosion area and potential energy loss is also
iii
described, and the distribution relationship is fitted with an exponential function.
It can be known from the experimental results that when the water flow rate and the
inclination angle are larger, the erodible particle bed and deposition will be significantly
changed. When the water flow rate is larger, the erosion area and the deposition area are both
positively correlated distributions. This is because the change of water flow will affect the
original frictional resistance between the particles, which will destroy the original structure of
the particles, which will lead to serious erosion and entrainment effects, and then affect the
deposition area distribution in the sedimentary bed. From the erosion distance and the
distribution of erosion depth at different positions in the trough, it is found that when the water
flow and inclination increase, the effect of erosion will become more and more obvious. From
the change of erosion rate and potential energy loss in the particle bed, it is found that the energy
loss will be more severe when the inclination angle is larger.
關鍵字(中) ★ 顆粒
★ 可傾斜流槽
★ 侵蝕
★ 沉積
★ 流量
★ 傾斜角
關鍵字(英) ★ avalanche
★ inclined channel
★ erosion
★ deposition
★ flow rate
★ tilt angle
論文目次 摘要 .............................................................................................................................................i
Abstract.......................................................................................................................................ii
誌謝...........................................................................................................................................iv
目錄............................................................................................................................................v
圖目錄......................................................................................................................................vii
表目錄.......................................................................................................................................ix
符號說明....................................................................................................................................x
1 第一章 簡介 ..........................................................................................................................1
1.1 前言 .............................................................................................................................1
1.1.1 顆粒崩塌流 ......................................................................................................2
1.1.2 侵蝕與夾帶行為 ..............................................................................................3
1.1.3 沉積行為 ..........................................................................................................5
1.1.4 泥石流型態 ......................................................................................................5
1.2 研究動機 .....................................................................................................................6
2 第二章 實驗方法與原理 ......................................................................................................7
2.1 實驗材料與設備 .........................................................................................................7
2.1.1 二維可調式傾斜流槽 ......................................................................................7
2.1.2 流量計與流量控制系統 ..................................................................................8
2.1.3 影像拍攝系統 ..................................................................................................8
2.2 實驗方法 .....................................................................................................................9
2.3 分析方法 ...................................................................................................................10
3 第三章 實驗結果與討論 ....................................................................................................21
3.1 流動過程變化 ...........................................................................................................21
3.1.1 顆粒床層的表面輪廓 ....................................................................................23
vi
3.2 侵蝕床 .......................................................................................................................24
3.2.1 侵蝕面積與時間關係比較 ............................................................................24
3.2.2 侵蝕面積在不同位置下的分布 ....................................................................25
3.2.3 最終侵蝕面積的隨傾斜角分布 ....................................................................26
3.2.4 最終侵蝕面積隨流槽位置分布 ....................................................................26
3.2.5 侵蝕深度在流槽不同位置隨時間分布 ........................................................28
3.2.6 侵蝕距離隨時間分布 ....................................................................................29
3.2.7 最終侵蝕距離 ................................................................................................29
3.2.8 最終侵蝕面積與位能變化關係 ....................................................................30
3.3 沉積床 .......................................................................................................................31
3.3.1 沉積面積與時間關係 ....................................................................................31
3.3.2 沉積面積在流槽中不同位置的分布 ............................................................31
3.3.3 最終沉積面積分布 ........................................................................................33
3.3.4 沉積深度在流槽中不同位置隨時間分布 ....................................................34
4 第四章 結論 ........................................................................................................................92
參考文獻..................................................................................................................................94
參考文獻 [1] Available from: https://highscope.ch.ntu.edu.tw/wordpress/?p=38951.
[2] Doyle, L.J., et al., Geology of Continental Slopes. Vol. 27. 1979.
[3] G, S., "Gravity flows: Types, definitions, origins, identification markers, and problems."
Journal Indian Association of Sedimentologists, 2020. 37(2): pp. 61-90.
[4] Dai, Z.L., et al., "A hydraulic soil erosion model based on a weakly compressible
smoothed particle hydrodynamics method." Bulletin of Engineering Geology and the
Environment, 2019. 78(8): pp. 5853-5864.
[5] Larcher, M., et al., "Set of measurement data from flume experiments on steady uniform
debris flows." Journal of Hydraulic Research, 2007. 45: pp. 59-71.
[6] Khosravi, K., et al., "A laboratory investigation of bed-load transport of gravel
sediments under dam break flow." International Journal of Sediment Research, 2021.
36(2): pp. 229-234.
[7] Aragon, J.A.G., "GRANULAR-FLUID CHUTE FLOW - EXPERIMENTAL AND
NUMERICAL OBSERVATIONS." Journal of Hydraulic Engineering-Asce, 1995. 121(4):
pp. 355-364.
[8] Lanzoni, S., et al., "Coarse-grained debris flow dynamics on erodible beds." Journal of
Geophysical Research-Earth Surface, 2017. 122(3): pp. 592-614.
[9] Armanini, A., "Closure relations for mobile bed debris flows in a wide range of slopes
and concentrations." Advances in Water Resources, 2015. 81: pp. 75-83.
[10] Larcher, M., et al., "Particle entrainment in unsteady-uniform granular avalanches."
Physical Review Fluids, 2018. 3(12): pp. 11.
[11] Zech, Y., et al., "Dam-break induced sediment movement: Experimental approaches and
numerical modelling." Journal of Hydraulic Research, 2008. 46(2): pp. 176-190.
[12] Fent, I., et al., "Dam-break flow experiments over mobile bed: velocity profile." Journal
95
of Hydraulic Research, 2019. 57(1): pp. 131-138.
[13] Barbolini, M., et al., "Laboratory study of erosion processes in snow avalanches." Cold
Regions Science and Technology, 2005. 43(1-2): pp. 1-9.
[14] Egashira, S., et al., "Experimental study on the entrainment of bed material into debris
flow." Physics and Chemistry of the Earth Part C-Solar-Terrestial and Planetary Science,
2001. 26(9): pp. 645-650.
[15] Gauer, P., et al., Possible erosion mechanisms in snow avalanches, in Annals of
Glaciology, Vol 38, 2004, P.M.B. Fohn, Editor. 2004, Int Glaciological Soc: Cambridge.
p. 384-392.
[16] Liu, Y.C., et al., "Measuring bedload in gravel-bed mountain rivers: averaging methods
and sampling strategies." Geodinamica Acta, 2008. 21(1-2): pp. 81-92.
[17] Meunier, P., et al., "Flow pattern and sediment transport in a braided river: The "torrent
de St Pierre" (French Alps)." Journal of Hydrology, 2006. 330(3-4): pp. 496-505.
[18] McCoy, S.W., et al., "Sediment entrainment by debris flows: In situ measurements from
the headwaters of a steep catchment." Journal of Geophysical Research-Earth Surface,
2012. 117: pp. 25.
[19] Pan, H.L., et al., "Mechanism of Downcutting Erosion of Debris Flow over a Movable
Bed." Journal of Mountain Science, 2015. 12(1): pp. 243-250.
[20] Lu, P.Y., et al., "The entrainment effect of a debris avalanche on the erodible substrate in
the presence of water flow." Ksce Journal of Civil Engineering, 2018. 22(1): pp. 83-91.
[21] Ni, S.M., et al., "Erosion processes and features for a coarse-textured soil with different
horizons: a laboratory simulation." Journal of Soils and Sediments, 2020. 20(7): pp.
2997-3012.
[22] Kim, Y., et al., "Depositional characteristics of debris flows in a rectangular channel
with an abrupt change in slope." Journal of Hydro-Environment Research, 2015. 9(3):
pp. 420-428.
96
[23] Crosta, G.B., et al., "Numerical modelling of entrainment/deposition in rock and debrisavalanches."
Engineering Geology, 2009. 109(1-2): pp. 135-145.
[24] Armanini, A., et al., "Rheological stratification in experimental free-surface flows of
granular-liquid mixtures." Journal of Fluid Mechanics, 2005. 532: pp. 269-319.
[25] Berzi, D., et al., DEBRIS FLOWS: RECENT ADVANCES IN EXPERIMENTS AND
MODELING, in Advances in Geophysics, Vol 52, R. Dmowska, Editor. 2010, Elsevier
Academic Press Inc: San Diego. p. 103-138.
[26] Thongsang, P., et al., "Imaging Enhancement in Angle-Domain Common-Image-Gathers
Using the Connected-Component Labeling Method." Pure and Applied Geophysics,
2020. 177(10): pp. 4897-4912.
[27] Tian, R., et al., "Sobel Edge Detection Based on Weighted Nuclear Norm Minimization
Image Denoising." Electronics, 2021. 10(6): pp. 14.
[28] Nobach, H., et al., "Improvements to PIV image analysis by recognizing the velocity
gradients." Experiments in Fluids, 2005. 39(3): pp. 612-620.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2022-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明