博碩士論文 109323090 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.148.162.188
姓名 王宏彬(Hong-Bin Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用機器學習之堆疊模型於產品瑕疵分類之研究
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以機器學習導入電梯生產結果預測之研究
★ 新環保冷媒R454取代R410A冷媒迴轉式單缸壓縮機效能分析與可靠性驗證★ 高速銑削Al7475-T7351的銑削參數與基因演算法研究
★ 自動化鞋型切削機之設計與實現★ 以FPGA為基礎之精密位置控制IC
★ CNC三維圓弧插補器★ PID與模糊控制在營建工程自動化的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 產品的出產良率代表著一個產品最終的價值,而半導體產品製造過程複雜且繁多,產品瑕疵在一道道的製程下累積,因此在如此多的製造過程中設置檢測點已必不可少。每一次產品進行檢測,無法即時進入下一階段製程產生了時間成本,目前檢測人員透過機台掃描資訊進行判讀,於產品中進行隨機抽樣,往往無法檢測到有問題的關鍵瑕疵,因此若能對那一種機台進行解讀,得到產品目前狀況,便能夠有效改善產品之良率,減少量測時間。
本論文以上述為出發點,透過國內某工廠之實際產品檢測數據,針對產品瑕疵與非瑕疵資料的不平衡情況,以人工智慧堆疊模型建立一產品瑕疵預測模型,透過不同機器學習模型的組合,以期能提升檢測速度與準確度。
摘要(英) The yield rate of a product is a crucial factor in determining its final value, since the semiconductor manufacturing process is complex and varied. Product defects accumulate over different processes, making it essential to set up detection points in the manufacturing processes. However, the product won′t be able to enter the next process while detecting, which leads to a huge time cost. Currently, fetching the data of the product from scanning machines, and randomly sampling the defects, couldn′t solve the problem of the key product defects detection effectively. Therefore, analyzing the data from the inspection machine, and find out the current state of the product, will improve the yield of the product effectively, and reduce the measurement time.
Base on the basis mentioned about, this thesis uses artificial intelligence stacking model to establish a product defect prediction model based on the actual product detection data from a domestic factory, aiming at the imbalance between product defect and non-defect data, and through the combination of different machine learning models, in order to improve the detection speed and
accuracy.
關鍵字(中) ★ 瑕疵辨識
★ 分類不平衡問題
★ 機器學習
★ 堆疊模型
關鍵字(英) ★ defect recognition
★ Class imbalance
★ Machine Learning
★ Stacking Model
論文目次 目錄

摘要 ................................................... I
Abstract ............................................... II
誌謝 ................................................. III
目錄 .................................................. IV
圖目錄 ................................................ VI
第一章 緒論 ............................................. 1
研究動機與目的................................................................... 1
文獻回顧 ............................................................................... 4
文章架構 ............................................................................. 14
第二章 晶圓廠數據介紹分析與處理 ........................ 16
晶圓數據分析..................................................................... 16
2.1.1 晶圓數據 ............................................................................. 16
2.1.2 參數重要度分析................................................................. 17
晶圓數據處理..................................................................... 19
2.2.1 過採樣(Oversampling) .................................................. 20
2.2.2 欠採樣(Undersampling) ................................................ 21
第三章 數據驅動模型介紹 ................................ 23
集成模型 (Ensemble model) ........................................ 23
V
3.1.1 Bagging 模型架構............................................................... 23
3.1.2 Boosting 模型架構............................................................. 24
3.1.3 Stacking 模型架構.............................................................. 25
堆疊模型選用之模型......................................................... 27
3.2.1 Random Forest Classifier .................................................... 28
3.2.2 Gradient Boosting Classifier ............................................... 28
3.2.3 Support Vector Classifier..................................................... 30
3.2.4 Light Gradient Boosting Classifier...................................... 32
3.2.5 Logistic Regression ............................................................. 34
第四章 模型評估指標 .................................... 36
混淆矩陣(Confusion Matric)......................................... 36
精確率(Precision)、召回率(Recall)與 F1-score....... 37
a. 精確率 ................................................................................. 38
b. 召回率 ................................................................................. 38
c. F1-score ............................................................................... 38
第五章 實驗結果 ........................................ 39
堆疊模型建立..................................................................... 39
不同方法之結果比較......................................................... 41
第六章 結論與未來展望 .................................. 44
參考文獻............................................... 46
參考文獻 參考文獻
[1]Pfeffer, M., Oechsner, R., Pfitzner, L., Eckert, S., Hartmann, A., Gold,
H., Biebl, G., & Kaspar, J., “Predictive sampling approach to dynamically
optimize defect density control operations”, 2012 SEMI Advanced
Semiconductor Manufacturing Conference, pp. 365-370, 2012.
[2]Nurani, R. K., Akella, R., Strojwas, A., Wallace, R., McIntyre, M.,
Shields, J., & Emami, I., “Development of an optimal sampling strategy for
wafer inspection”, International Symposium on Semiconductor
Manufacturing, Extended Abstracts of ISSM, pp. 143-146, June 1994
[3]王琪,「建構半導體晶圓廠抽樣決策模式」,國立清華大學,碩
士論文,民國 100 年。
[4]Dauzere-Péres, S., Rouveyrol, J. L., Yugma, C., & Vialletelle, P., “A
smart sampling algorithm to minimize risk dynamically”, 2010 IEEE/SEMI
Advanced Semiconductor Manufacturing Conference, pp. 307-310, July 2010
[5]Housseman, S., Dauzère-Pérès, S., Rodriguez-Verjan, G., & Pinaton, J.,
“Smart dynamic sampling for wafer at risk reduction in semiconductor
manufacturing”, 2014 IEEE International Conference on Automation Science
and Engineering, pp. 780-785, August 2014
[6]林瑞山,「類神經網路於預測晶圓測試良率之應用」,國立成功
大學,碩士論文,民國 93 年。
47
[7]Saqlain, M., Abbas, Q., & Lee, J. Y., “A Deep Convolutional Neural
Network for Wafer Defect Identification on an Imbalanced Dataset in
Semiconductor Manufacturing Processes”, IEEE Transactions on
Semiconductor Manufacturing, Vol 33, no. 3, pp. 436-444, 2020
[8]Desprez, M., Zawada, K., & Ramp, D., “Overcoming the ordinal
imbalanced data problem by combining data processing and stacked
generalizations”, Machine Learning with Applications, Vol 7, p. 100241,
2022
[9]zjuPeco:利用隨機森林對特徵重要性進行評估,2022 年 8 月 10
日,取自
[10]s790502ss:Python 演算法 Day 15 - Imbalanced Data,2022 年 8
月 10 日,取自 https://ithelp.ithome.com.tw/articles/10283392
[11]10 程式中:整體學習 (Ensemble Learning) ,2022 年 8 月 10
日,取自 https://ithelp.ithome.com.tw/articles/10271882?cv=1&sessionid=4ceeec3ef6e648f4bf6731ab5c66e129
[12]Big Data In Finance:機器學習的堆疊(Stacking),2022 年 8 月 10
日,取自 https://bigdatafinance.tw/index.php/tech/methodology/1098-
stacking
[13]10 程式中:多棵決策樹更厲害:隨機森林 (Random forest) - iT
邦幫忙,2022 年 8 月 10 日,取自 https://reurl.cc/RXjARz
[14]RAJAT PANCHOTIA:Introduction To Gradient Boosting
48
Classification,2022 年 8 月 10 日,取自 https://medium.com/analyticsvidhya/introduction-to-gradient-boosting-classification-da4e81f54d3
[15]Sweta Garai:Support Vector Classifier and Support Vector
Machine,2022 年 8 月 10 日 https://medium.com/@swetaprabha/supportvector-classifier-and-support-vector-machine-4a675b8cac88
[16]學習使我快樂:Lightgbm 基本原理介紹,2022 年 8 月 10 日,取
自 https://www.twblogs.net/a/5baa44f32b717750855c8ac6?cv=1&sessionid=4ceeec3ef6e648f4bf6731ab5c66e129
[17]AI 蝸牛車:【白話機器學習】算法理論+實戰之 LightGBM 算
法,2022 年 8 月 10 日,取自 https://www.twblogs.net/a/5f02d25e9992740
2d4fd09f4?cv=1&session-id=4ceeec3ef6e648f4bf6731ab5c66e129
[18]RAJAT PANCHOTIA:Predictive Modelling Using Logistic
Regression,2022 年 8 月 10 日,取自 https://medium.com/analyticsvidhya/predictive-modelling-using-logistic-regression-2d3a16650b4
指導教授 董必正(Pi-Cheng Tung) 審核日期 2022-9-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明