摘要(英) |
The yield rate of a product is a crucial factor in determining its final value, since the semiconductor manufacturing process is complex and varied. Product defects accumulate over different processes, making it essential to set up detection points in the manufacturing processes. However, the product won′t be able to enter the next process while detecting, which leads to a huge time cost. Currently, fetching the data of the product from scanning machines, and randomly sampling the defects, couldn′t solve the problem of the key product defects detection effectively. Therefore, analyzing the data from the inspection machine, and find out the current state of the product, will improve the yield of the product effectively, and reduce the measurement time.
Base on the basis mentioned about, this thesis uses artificial intelligence stacking model to establish a product defect prediction model based on the actual product detection data from a domestic factory, aiming at the imbalance between product defect and non-defect data, and through the combination of different machine learning models, in order to improve the detection speed and
accuracy. |
參考文獻 |
參考文獻
[1]Pfeffer, M., Oechsner, R., Pfitzner, L., Eckert, S., Hartmann, A., Gold,
H., Biebl, G., & Kaspar, J., “Predictive sampling approach to dynamically
optimize defect density control operations”, 2012 SEMI Advanced
Semiconductor Manufacturing Conference, pp. 365-370, 2012.
[2]Nurani, R. K., Akella, R., Strojwas, A., Wallace, R., McIntyre, M.,
Shields, J., & Emami, I., “Development of an optimal sampling strategy for
wafer inspection”, International Symposium on Semiconductor
Manufacturing, Extended Abstracts of ISSM, pp. 143-146, June 1994
[3]王琪,「建構半導體晶圓廠抽樣決策模式」,國立清華大學,碩
士論文,民國 100 年。
[4]Dauzere-Péres, S., Rouveyrol, J. L., Yugma, C., & Vialletelle, P., “A
smart sampling algorithm to minimize risk dynamically”, 2010 IEEE/SEMI
Advanced Semiconductor Manufacturing Conference, pp. 307-310, July 2010
[5]Housseman, S., Dauzère-Pérès, S., Rodriguez-Verjan, G., & Pinaton, J.,
“Smart dynamic sampling for wafer at risk reduction in semiconductor
manufacturing”, 2014 IEEE International Conference on Automation Science
and Engineering, pp. 780-785, August 2014
[6]林瑞山,「類神經網路於預測晶圓測試良率之應用」,國立成功
大學,碩士論文,民國 93 年。
47
[7]Saqlain, M., Abbas, Q., & Lee, J. Y., “A Deep Convolutional Neural
Network for Wafer Defect Identification on an Imbalanced Dataset in
Semiconductor Manufacturing Processes”, IEEE Transactions on
Semiconductor Manufacturing, Vol 33, no. 3, pp. 436-444, 2020
[8]Desprez, M., Zawada, K., & Ramp, D., “Overcoming the ordinal
imbalanced data problem by combining data processing and stacked
generalizations”, Machine Learning with Applications, Vol 7, p. 100241,
2022
[9]zjuPeco:利用隨機森林對特徵重要性進行評估,2022 年 8 月 10
日,取自
[10]s790502ss:Python 演算法 Day 15 - Imbalanced Data,2022 年 8
月 10 日,取自 https://ithelp.ithome.com.tw/articles/10283392
[11]10 程式中:整體學習 (Ensemble Learning) ,2022 年 8 月 10
日,取自 https://ithelp.ithome.com.tw/articles/10271882?cv=1&sessionid=4ceeec3ef6e648f4bf6731ab5c66e129
[12]Big Data In Finance:機器學習的堆疊(Stacking),2022 年 8 月 10
日,取自 https://bigdatafinance.tw/index.php/tech/methodology/1098-
stacking
[13]10 程式中:多棵決策樹更厲害:隨機森林 (Random forest) - iT
邦幫忙,2022 年 8 月 10 日,取自 https://reurl.cc/RXjARz
[14]RAJAT PANCHOTIA:Introduction To Gradient Boosting
48
Classification,2022 年 8 月 10 日,取自 https://medium.com/analyticsvidhya/introduction-to-gradient-boosting-classification-da4e81f54d3
[15]Sweta Garai:Support Vector Classifier and Support Vector
Machine,2022 年 8 月 10 日 https://medium.com/@swetaprabha/supportvector-classifier-and-support-vector-machine-4a675b8cac88
[16]學習使我快樂:Lightgbm 基本原理介紹,2022 年 8 月 10 日,取
自 https://www.twblogs.net/a/5baa44f32b717750855c8ac6?cv=1&sessionid=4ceeec3ef6e648f4bf6731ab5c66e129
[17]AI 蝸牛車:【白話機器學習】算法理論+實戰之 LightGBM 算
法,2022 年 8 月 10 日,取自 https://www.twblogs.net/a/5f02d25e9992740
2d4fd09f4?cv=1&session-id=4ceeec3ef6e648f4bf6731ab5c66e129
[18]RAJAT PANCHOTIA:Predictive Modelling Using Logistic
Regression,2022 年 8 月 10 日,取自 https://medium.com/analyticsvidhya/predictive-modelling-using-logistic-regression-2d3a16650b4 |