博碩士論文 107323032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.145.46.232
姓名 程憲威(Hsien-Wei Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以微電鍍法製備鎳鉬合金微柱並探討其在1.0 M KOH溶液中電解產氫之性能
(Fabrication of Ni-Mo Alloying micropillars by Micro-Anode Guided Electroplating and Their use in 1.0 M KOH to produce Hydrogen gas)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以微陽極引導電鍍(Micro-Anode Guided Electroplating, MAGE)來析鍍鎳鉬合金微柱,隨後將這些微柱作為陰極,探討其在1.0 M KOH溶液中電解水產氫之特性。微電鍍使用含0.15 M硫酸鎳、0.008~0.064 M鉬酸鈉與0.36 M焦磷酸鈉鍍浴,微陽極與陰極之間距在40μm,電壓在4.1~5.0 V進行電鍍,過程中,以CCD監控影像,並記錄電鍍電流。析鍍產物以精密天秤秤重以計算電鍍效率。析鍍微柱以SEM觀察表面形貌、EDS檢測組成、EPMA分析橫截面之成分分布、XRD分析其晶體結構,結果顯示:若在含0.008M鉬酸鈉鍍浴中電鍍,電壓由4.1 V增至5.0 V時,所得微柱之直徑微幅縮減(由138.38 μm減至130.43 μm,縮減約5.75%),但組成中Mo含量由28.4 增高至55.4 at. %;若在5.0 V電壓下,鉬酸鈉濃度由0.008增至0.064 M之鍍浴中電鍍,所得微柱之直徑也是微幅縮減(從130.43 μm減小至126.35 μm縮減約1.95%),而組成中Mo含量由55.4 at.%增高至69.4 at.%。XRD圖譜顯示經本製程所得微柱均屬於非晶構造。COMSOL Multiphysics 5.2模擬電鍍時的電場分布情形,有助於理解析鍍產物的形貌、組成與結構受電鍍參數之影響。
在1.0 M KOH水溶液中,鎳鉬合金微柱之產氫反應(hydrogen evolution reaction, HER)測試,包括塔弗斜率法、循環伏安法、計時電位法等評估法。結果顯示,微柱之產氫效能受其組成影響,由塔弗斜率測試得知:當鉬含量由28.4 at.%增加至55.4 at.%,斜率由254.37 mV/dec下降至112.85 mV/dec,但鉬含量由55.4 at.%增至69.4 at.%時,斜率又回升至160.36 mV/dec,從塔弗斜率可以知道,產氫由Volmer-Tafel主導。循環伏安法之結果顯示:微柱含55.4 at.% Mo之試片,在經過100次循環後擁有最高的峰值電流密度2418 mA/cm2。在計時電位法實驗中,同時以排水集氣法收集氫氣,歷經300秒反應,微柱鉬含量在28.4~55.4 at.%時,可收集5.3~7.7 mL的氫氣,在鉬含量57.6~69.4 at.%後,氫氣體積由7.7 mL下降至7.0 mL;經由計時電位法計算電量,估計產氫之法拉第效率,微柱鉬含量在34.2~55.4 at.%時,可得到效率75.97~97.32%,在鉬含量57.6~69.4 at.%後,效率由93.56%下降至88.54%。和文獻中鎳鉬薄膜相比在電解水產氫的效果更佳,鎳鉬合金微柱的過電位更低、交換電流密度更大,因此產氫反應更容易進行。
摘要(英) This study uses Micro-Anode Guided Electroplating (MAGE) to deposit nickel-molybdenum alloy micropillars, and then use these micropillars as cathodes to explore the characteristics of electrolyzing water in 1.0 M KOH solution to produce hydrogen. Micro electroplating uses a plating bath containing 0.15 M nickel sulfate, 0.008~0.064 M sodium molybdate and 0.36 M sodium pyrophosphate, the distance between the micro anode and the cathode is 40 μm, and the voltage is 4.1~5.0 V for electroplating. During the process, the image is monitored by CCD , And record the plating current. The electroplating product is weighed with a precision balance to calculate the electroplating efficiency. The surface morphology of the plated micropillar was observed by SEM, the composition of EDS was detected, the composition distribution of the cross section was analyzed by EPMA, and the crystal structure was analyzed by XRD. The results showed that if electroplating in a bath containing 0.008M sodium molybdate, the voltage increased by 4.1 V At 5.0 V, the diameter of the micropillars obtained is slightly reduced (from 138.38 μm to 130.43 μm, a reduction of about 5.75%), but the Mo content in the composition increases from 28.4 to 55.4 at. %; if the voltage is at 5.0 V, the molybdenum When the sodium concentration is increased from 0.008 to 0.064 M for electroplating in the plating bath, the diameter of the resulting micropillars is also slightly reduced (from 130.43 μm to 126.35 μm, a decrease of about 1.95%), and the Mo content in the composition increases from 55.4 at.% To 69.4 at.%. The XRD pattern shows that the micropillars obtained by this process are all amorphous structures. COMSOL Multiphysics 5.2 simulates the electric field distribution during electroplating, which helps to analyze the influence of electroplating parameters on the morphology, composition and structure of the plating product.
In 1.0 M KOH aqueous solution, the hydrogen evolution reaction (HER) test of nickel-molybdenum alloy micropillars includes evaluation methods such as Tarfer slope method, cyclic voltammetry, and chronopotentiometry. The results show that the hydrogen production efficiency of the microcolumn is affected by its composition. According to the Tarver slope test, when the molybdenum content increases from 28.4 at.% to 55.4 at.%, the slope decreases from 254.37 mV/dec to 112.85 mV/dec. But when the molybdenum content increases from 55.4 at.% to 69.4 at.%, the slope rises back to 160.36 mV/dec. From the Tafer slope, it can be known that the hydrogen production is dominated by Volmer-Tafel. The results of cyclic voltammetry show that the micro-column test piece with 55.4 at.% Mo has the highest peak current density of 2418 mA/cm2 after 100 cycles. In the chronopotentiometric experiment, hydrogen was collected by drainage gas collection method at the same time. After 300 seconds of reaction, when the molybdenum content of the microcolumn was 28.4~55.4 at.%, 5.3~7.7 mL of hydrogen could be collected, and the hydrogen content was 57.6~69.4 at. After .%, the volume of hydrogen decreased from 7.7 mL to 7.0 mL; the electric quantity was calculated by chronopotentiometry to estimate the Faraday efficiency of hydrogen production. When the molybdenum content of the microcolumn was 34.2~55.4 at.%, the efficiency was 75.97~97.32%. After the molybdenum content is 57.6~69.4 at.%, the efficiency drops from 93.56%to 88.54%. Compared with the nickel-molybdenum film in the literature, the effect of hydrogen production in electrolyzed water is better. The nickel-molybdenum alloy micropillars have lower overpotential and higher exchange current density, so the hydrogen production reaction is easier to proceed.
關鍵字(中) ★ 微陽極導引電鍍
★ 鎳鉬合金
★ 鎳鉬電鍍分佈
★ 產生氫反應
★ 非貴金屬觸媒
關鍵字(英)
論文目次 摘要 i
ABSTRACT iii
致謝 vi
目錄 viii
表目錄 xi
圖目錄 xii
第一章、序論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 3
第二章、理論背景與文獻回顧 4
2-1 電化學原理(電鍍與產氫電化學) 4
2-1-1 鎳鉬合金薄膜之電鍍 4
2-1-2 微電鍍技術之發展 5
2-1-3 鎳鉬合金微柱之電鍍 9
2-1-4 奈米壓痕量測 13
2-1-5 電場模擬軟體COMSOL 14
2-1-5 陰極極化曲線 16
2-1-6 電化學交流阻抗(Electrochemical Impedance Spectroscopy,EIS) 16
2-2 鎳鉬合金之鹼性電解產氫 17
2-2-1 水之電解產氫 17
2-2-2 析氫火山圖 19
2-2-3 鎳基合金之鹼性電解產氫 19
2-2-4 鎳鉬合金之鹼性電解產氫 21
2-2-5 電解產氫電化學測試 22
2-2-5-1 產氫之陰極極化曲線與塔弗斜率 22
2-2-5-2 循環伏安法(Cyclic Voltammetry) 23
2-2-5-3 計時電位法(Chronopotentiometry) 25
2-3 法拉第效率 25
第三章、實驗設備與研究方法 27
3-1 實驗流程 27
3-1-1 實驗設備 27
3-1-2 微陽極影像引導電鍍法 30
3-2 微電鍍製備鎳鉬合金微柱 30
3-2-2 陰陽極製備 30
3-2-3 鍍浴配置 30
3-3 樣品觀察與分析 31
3-3-1 SEM與EDS 31
3-3-2 EPMA 31
3-3-3 XRD 31
3-3-4 電鍍電流量測與電鍍效率計算 32
3-3-5 奈米壓痕 32
3-4 鎳鉬合金微柱之熱處理 32
3-5 電場模擬軟體COMSOL 33
3-6 動態電位陰極極化曲線之設備、電極與步驟 34
3-7 定電位EIS之設備、電極與步驟 34
3-8 氫氣收集及效率計算 35
3-9 產氫電化學測試 35
3-9-1 陰極極化曲線 35
3-9-2 循環伏安法 36
3-9-3 計時電位法 36
第四章、結果 37
A. 微柱的析鍍與特性分析 37
4-1 鍍浴中鉬酸鈉濃度對所得微柱之形貌、成分、電場分布之影響 37
4-1-1 微柱形貌(SEM)之改變 37
4-1-2 微柱之成分分析(EDS) 37
4-1-3 柱徑之變化 38
4-1-4 析鍍電流量測與析鍍電流效率之計算 38
4-1-5 COMSOL模擬所得電場分布情形 41
4-2 析鍍偏壓對微柱之形貌、成分、電場分布之影響 42
4-2-1 微柱形貌(SEM)之改變 42
4-2-2 微柱之成分分析(EDS) 42
4-2-3 柱徑之變化 43
4-2-4 析鍍電流量測與析鍍電流效率之計算 43
4-2-5 COMSOL模擬所得電場分布情形 46
4-3 微柱之機械性質(奈米壓痕測試)之改變 47
4-4 微柱之結構(XRD)之改變 49
4-5 微柱之成分分布(EPMA) 50
4-6 動態電位陰極極化曲線、定電位EIS探討 51
4-6-1 動態電位陰極極化曲線探討 51
4-6-2 定電位EIS探討 52
B. 不同組成之微柱在鹼性水溶液中之電解產氫性能探討 53
4-7 微柱中電解產氫電化學測試結果 53
4-7-1 產氫反應之極化曲線 53
4-7-2 循環伏安法(Cyclic Voltammetry) 56
4-7-3 計時電位法(Chronopotentiometry) 56
第五章、討論 60
A. 微柱的析鍍與特性分析 60
5-1 影響微柱形貌、成分、結構、性質之電鍍因素 60
5-1-1 鉬酸鈉濃度、析鍍偏壓對COMSOL電場分布之影響 60
5-1-2 鉬酸鈉濃度、析鍍偏壓對鎳鉬合金微柱組成之影響 60
5-1-3 鉬含量對鎳鉬合金微柱XRD圖譜之影響 61
5-1-4 鎳鉬合金中鉬含量對微柱機械性質之影響 62
5-1-5 電場強度對鎳鉬合金微柱柱徑之影響 63
5-1-6 熱處理和微柱組成對鎳鉬合金微柱之EPMA之影響 63
5-1-7 鍍液中鉬酸鈉濃度對動態電位陰極極化曲線之影響 64
5-1-8 鍍液中鉬酸鈉濃度對定電位EIS圖譜之影響 65
B. 不同組成之微柱在鹼性水溶液中之電解產氫性能探討 66
5-2 微柱特性對鹼性水電解產氫性能之影響 66
5-2-1 微柱組成對產氫陰極極化之影響 66
5-2-2 微柱組成對循環伏安法之影響 67
5-2-3 微柱組成對計時電位法之影響 67
5-2-4 本論文之產氫效能與其他研究結果之比較 68
第六章、結論與未來展望 70
6-1 結論 70
6-2 未來展望 73
參考文獻 74
參考文獻 [1] K. Qi et al., "Decoration of the inert basal plane of defect-rich MoS 2 with Pd atoms for achieving Pt-similar HER activity," Journal of Materials Chemistry A, vol. 4, no. 11, pp. 4025-4031, 2016.
[2] J. D. Madden, S. R. Lafontaine, and I. W. Hunter, "Fabrication by electrodeposition: building 3D structures and polymer actuators," in MHS′95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, pp. 77-81: IEEE.
[3] E. El-Giar and D. Thomson, "Localized electrochemical plating of interconnectors for microelectronics," in IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings, 1997, pp. 327-332: IEEE.
[4] R. Said, "Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling," Nanotechnology, vol. 14, no. 5, p. 523, 2003.
[5] S. Yeo, J. Choo, and K. Sim, "On the effects of ultrasonic vibrations on localized electrochemical deposition," Journal of micromechanics and microengineering, vol. 12, no. 3, p. 271, 2002.
[6] S. Seol et al., "Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition," Electrochemical and Solid State Letters, vol. 7, no. 9, p. C95, 2004.
[7] Y. Li, J. Li, and F. Wang, "Localized electrochemical deposition of micrometer copper columns as affected by adding sulfuric acid," in 2016 17th International Conference on Electronic Packaging Technology (ICEPT), 2016, pp. 175-179: IEEE.
[8] 張庭綱, "微陽極導引電鍍法製作微銅柱及銅柵欄之研究," 碩士, 機械工程研究所, 國立中央大學, 桃園市, 2004.
[9] 游睿為, "單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析," 碩士, 機械工程研究所, 國立中央大學, 桃園市, 2001.
[10] 葉柏青, "微陽極引導電鍍與監測," 碩士, 機械工程研究所, 國立中央大學, 桃園市, 2003.
[11] 賴格源, "微陽極導引電鍍銅其組織及底部覆蓋範圍之探討," 碩士, 機械工程研究所, 國立中央大學, 桃園市, 2006.
[12] 陳譽升, "鎳微柱電鍍受鍍浴黏度與電阻率之影響," 博士, 機械工程研究所, 國立中央大學, 桃園市, 2011.
[13] 鄭家宏, "以微陽極導引電鍍法製作鎳銅合金微柱," 碩士, 機械工程研究所, 國立中央大學, 桃園市, 2005.
[14] J. Lin et al., "Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating," Journal of Micromechanics and Microengineering, vol. 15, no. 12, p. 2405, 2005.
[15] J. Lin, T. Chang, J. Yang, J. Jeng, D. Lee, and S. Jiang, "Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement," Journal of Micromechanics and Microengineering, vol. 19, no. 1, p. 015030, 2008.
[16] T. Chang, J. Lin, J. Yang, P. Yeh, D. Lee, and S. Jiang, "Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition," Journal of Micromechanics and Microengineering, vol. 17, no. 11, p. 2336, 2007.
[17] 楊仁泓, "微陽極導引電鍍法製備微析物之局部電場強度分析," 博士, 機械工程研究所, 國立中央大學, 桃園市, 2009.
[18] 黃俊強, "微電鍍法之製程參數對其製備鎳鐵合金微柱之形貌、機械性質與防蝕特性之影響," 碩士, 機械工程研究所, 國立中央大學, 桃園市, 2010.
[19] Y.-J. Ciou, Y.-R. Hwang, and J.-C. Lin, "Fabrication of two-dimensional microstructures by using micro-anode-guided electroplating with real-time image processing," ECS Journal of Solid State Science and Technology, vol. 3, no. 7, p. P268, 2014.
[20] 顧乃華, "以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析," 碩士, 機械工程學系, 國立中央大學, 桃園市, 2015.
[21] 拉維雅, "On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis," 碩士, 應用材料科學國際研究生碩士學位學程, 國立中央大學, 桃園市, 2020.
[22] F. Crnkovic, S. Machado, and L. Avaca, "Electrochemical and morphological studies of electrodeposited Ni–Fe–Mo–Zn alloys tailored for water electrolysis," International journal of hydrogen energy, vol. 29, no. 3, pp. 249-254, 2004.
[23] P. Zabinski, H. Nemoto, S. Meguro, K. Asami, and K. Hashimoto, "Electrodeposited Co-Mo-C cathodes for hydrogen evolution in a hot concentrated NaOH solution," Journal of the Electrochemical Society, vol. 150, no. 10, p. C717, 2003.
[24] C.-C. Hu and C.-Y. Weng, "Hydrogen evolving activity on nickel–molybdenum deposits using experimental strategies," Journal of applied electrochemistry, vol. 30, no. 4, pp. 499-506, 2000.
[25] J. F. Kriz, H. Shimada, Y. Yoshimura, N. Matsubayashi, and A. Nishijima, "Nickel-containing catalysts for hydroprocessing of aromatic oils," Fuel, vol. 74, no. 12, pp. 1852-1857, 1995.
[26] A. Laszczyńska and I. Szczygieł, "Electrocatalytic activity for the hydrogen evolution of the electrodeposited Co–Ni–Mo, Co–Ni and Co–Mo alloy coatings," International Journal of Hydrogen Energy, vol. 45, no. 1, pp. 508-520, 2020/01/01/ 2020.
[27] P. Kedzierzawski, D. Oleszak, and M. Janik-Czachor, "Hydrogen evolution on hot and cold consolidated Ni–Mo alloys produced by mechanical alloying," Materials Science and Engineering: A, vol. 300, no. 1-2, pp. 105-112, 2001.
[28] M. Donten, H. Cesiulis, and Z. Stojek, "Electrodeposition of amorphous/nanocrystalline and polycrystalline Ni–Mo alloys from pyrophosphate baths," Electrochimica Acta, vol. 50, no. 6, pp. 1405-1412, 2005.
[29] G. Goswami, S. Kumar, R. Galun, and B. Mordike, "Laser cladding of Ni-Mo alloys for hardfacing applications," Lasers Eng, vol. 13, no. 1, pp. 1-12, 2003.
[30] Y. Zeng, Z. Li, M. Ma, and S. Zhou, "In situ surface Raman study of the induced codeposition mechanism of Ni–Mo alloys," Electrochemistry communications, vol. 2, no. 1, pp. 36-38, 2000.
[31] E. Chassaing, K. V. Quang, and R. Wiart, "Mechanism of nickel-molybdenum alloy electrodeposition in citrate electrolytes," Journal of Applied Electrochemistry, vol. 19, no. 6, pp. 839-844, 1989.
[32] D. Ernst and M. Holt, "Cathode potentials during the electrodeposition of molybdenum alloys from aqueous solutions," Journal of the Electrochemical Society, vol. 105, no. 11, p. 686, 1958.
[33] E. Podlaha and D. Landolt, "Induced codeposition: III. Molybdenum alloys with nickel, cobalt, and iron," Journal of the Electrochemical Society, vol. 144, no. 5, p. 1672, 1997.
[34] N. Eliaz and E. Gileadi, "Induced codeposition of alloys of tungsten, molybdenum and rhenium with transition metals," in Modern aspects of electrochemistry: Springer, 2008, pp. 191-301.
[35] E. Gómez, E. Pellicer, and E. Vallés, "Detection and characterization of molybdenum oxides formed during the initial stages of cobalt–molybdenum electrodeposition," Journal of Applied Electrochemistry, vol. 33, no. 3-4, pp. 245-252, 2003.
[36] Z. Fekih, N. Ghellai, S. Sam, N. Chabanne-Sari, and N. Gabouze, "The iron-nickel-molybdenum (Fe-Ni-Mo) electrodeposited alloy on n-type silicon," Advances in materials science, vol. 12, no. 1, pp. 17-26, 2012.
[37] L. S. Sanches, S. H. Domingues, A. Carubelli, and L. H. Mascaro, "Electrodeposition of Ni-Mo and Fe-Mo alloys from sulfate-citrate acid solutions," Journal of the Brazilian Chemical Society, vol. 14, no. 4, pp. 556-563, 2003.
[38] L. S. Sanches, C. B. Marino, and L. H. Mascaro, "Investigation of the codeposition of Fe and Mo from sulphate-citrate acid solutions," Journal of alloys and compounds, vol. 439, no. 1-2, pp. 342-345, 2007.
[39] A. Brenner, Electrodeposition of alloys: principles and practice. Elsevier, 2013.
[40] V. Kuznetsov and T. Pshenichkina, "Kinetics of cathodic reactions in the electrodeposition of cobalt-molybdenum alloy," Russian Journal of Electrochemistry, vol. 46, no. 4, pp. 401-410, 2010.
[41] 張瑞慶,力學學會會訊,第114篇, "奈米壓痕技術與應用," 2006.
[42] T. J. Hughes, The finite element method: linear static and dynamic finite element analysis. Courier Corporation, 2012.
[43] E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons, 2018.
[44] A. Konieczny, K. Mondal, T. Wiltowski, and P. Dydo, "Catalyst development for thermocatalytic decomposition of methane to hydrogen," International Journal of Hydrogen Energy, vol. 33, no. 1, pp. 264-272, 2008.
[45] H. A. Liebhafsky and E. J. Cairns, "Fuel cells and fuel batteries. Guide to their research and development," 1968.
[46] S. Trasatti, "Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 39, no. 1, pp. 163-184, 1972.
[47] B. E. Conway and G. Jerkiewicz, "Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics," Electrochimica Acta, vol. 45, no. 25, pp. 4075-4083, 2000/08/31/ 2000.
[48] A. R. Zeradjanin, J. P. Grote, G. Polymeros, and K. J. Mayrhofer, "A critical review on hydrogen evolution electrocatalysis: Re‐exploring the volcano‐relationship," Electroanalysis, vol. 28, no. 10, pp. 2256-2269, 2016.
[49] G. G. Stoney, "The tension of metallic films deposited by electrolysis," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 82, no. 553, pp. 172-175, 1909.
[50] V. Vij et al., "Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions," Acs Catalysis, vol. 7, no. 10, pp. 7196-7225, 2017.
[51] D. Brown, M. Mahmood, M. Man, and A. Turner, "Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions," Electrochimica Acta, vol. 29, no. 11, pp. 1551-1556, 1984.
[52] T. F. O’Brien, T. V. Bommaraju, and F. Hine, "Chemistry and Electrochemistry of the Chlor-Alkali Process," in Handbook of Chlor-Alkali Technology: Springer, 2005, pp. 75-386.
[53] I. A. Raj, "Nickel-based, binary-composite electrocatalysts for the cathodes in the energy-efficient industrial production of hydrogen from alkaline-water electrolytic cells," Journal of materials science, vol. 28, no. 16, pp. 4375-4382, 1993.
[54] L. Sun, Q. Luo, Z. Dai, and F. Ma, "Material libraries for electrocatalytic overall water splitting," Coordination Chemistry Reviews, vol. 444, p. 214049, 2021/10/01/ 2021.
[55] S. Shetty, M. M. J. Sadiq, D. K. Bhat, and A. C. Hegde, "Electrodeposition and characterization of Ni-Mo alloy as an electrocatalyst for alkaline water electrolysis," Journal of Electroanalytical Chemistry, vol. 796, pp. 57-65, 2017.
[56] S. Shetty, M. M. J. Sadiq, D. K. Bhat, and A. C. J. J. o. E. C. Hegde, "Electrodeposition and characterization of Ni-Mo alloy as an electrocatalyst for alkaline water electrolysis," vol. 796, pp. 57-65, 2017.
[57] R. K. Shervedani, A. H. Alinoori, and A. R. Madram, "Electrocatalytic activities of nickel-phosphorous composite coating reinforced with codeposited graphite carbon for hydrogen evolution reaction in alkaline solution," J New Mater Electrochem Syst, vol. 11, no. 4, pp. 259-265, 2008.
[58] R. Mousavi, M. E. Bahrololoom, and F. Deflorian, "The effect of surfactant on the microstructure and corrosion resistance of electrodeposited Ni-Mo alloy coatings," Anti-Corrosion Methods and Materials, 2019.
[59] L. Chun-Ying, M. Wei-Ti, G. Ming-Der, and L. Hung-Bin, "A study on the corrosion and wear behavior of nanocrystalline NiMo electrodeposited coatings," Surface and Coatings Technology, vol. 366, pp. 286-295, 2019.
[60] B. Jović, U. Lačnjevac, V. Jović, L. Gajić Krstajić, and N. Krstajić, "On the kinetics of the hydrogen evolution reaction on Ni-MoOx composite catalysts in alkaline solutions," Journal of the Serbian Chemical Society, vol. 77, no. 2, pp. 211-224, 2012.
[61] N. P. Wasekar, S. Verulkar, M. Vamsi, and G. Sundararajan, "Influence of molybdenum on the mechanical properties, electrochemical corrosion and wear behavior of electrodeposited Ni-Mo alloy," Surface and Coatings Technology, vol. 370, pp. 298-310, 2019.
[62] J. Highfield, E. Claude, and K. Oguro, "Electrocatalytic synergism in Ni/Mo cathodes for hydrogen evolution in acid medium: a new model," Electrochimica acta, vol. 44, no. 16, pp. 2805-2814, 1999.
[63] M. Jakšić, "Electrocatalysis of hydrogen evolution in the light of the brewer—engel theory for bonding in metals and intermetallic phases," Electrochimica Acta, vol. 29, no. 11, pp. 1539-1550, 1984.
[64] M. Jakšić, "Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel valence-bond theory," International Journal of Hydrogen Energy, vol. 12, no. 11, pp. 727-752, 1987.
[65] S. Neophytides, S. Zafeiratos, G. Papakonstantinou, J. Jaksic, F. Paloukis, and M. Jaksic, "Extended Brewer hypo-hyper-d-interionic bonding theory II. Strong metal-support interaction grafting of composite electrocatalysts," International journal of hydrogen energy, vol. 30, no. 4, pp. 393-410, 2005.
[66] G. Tasić, B. Jović, U. Lačnjevac, N. Krstajić, and V. Jović, "Ni-MoO2 cathodes for hydrogen evolution in alkaline solutions. Effect of the conditions of their electrodeposition," Journal of Electrochemical Science and Engineering, vol. 3, no. 1, pp. 29-36, 2013.
[67] B. Tilak, A. Ramamurthy, and B. Conway, "High performance electrode materials for the hydrogen evolution reaction from alkaline media," in Proceedings of the Indian Academy of Sciences-chemical sciences, 1986, vol. 97, no. 3-4, pp. 359-393: Springer.
[68] F. Safizadeh, E. Ghali, and G. Houlachi, "Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review," international journal of hydrogen energy, vol. 40, no. 1, pp. 256-274, 2015.
[69] A. J. Bard and L. R. Faulkner, "Fundamentals and applications," Electrochemical Methods, vol. 2, no. 482, pp. 580-632, 2001.
[70] P. T. Kissinger and W. R. Heineman, "Cyclic voltammetry," Journal of Chemical Education, vol. 60, no. 9, p. 702, 1983.
[71] F. Wilhelm, N. Van der Vegt, H. Strathmann, and M. Wessling, "Comparison of bipolar membranes by means of chronopotentiometry," Journal of membrane science, vol. 199, no. 1-2, pp. 177-190, 2002.
[72] J. Lee, W. Chung, U. Jung, and Y. Kim, "Direct nickel electrodeposition on magnesium alloy in pyrophosphate electrolyte," Surface and Coatings Technology, vol. 205, no. 16, pp. 4018-4023, 2011.
[73] S. Sun and E. J. Podlaha, "Electrodeposition of Mo-Rich, MoNi Alloys from an Aqueous Electrolyte," Journal of The Electrochemical Society, vol. 159, no. 2, pp. D97-D102, 2011.
[74] T. D. Golden, J. Tientong, and A. M. Mohamed, "Electrodeposition of Nickel-Molybdenum (Ni-Mo) Alloys for Corrosion Protection in Harsh Environments," in Research Perspectives on Functional Micro-and Nanoscale Coatings: IGI Global, 2016, pp. 369-395.
[75] H.-J. Kim, H. Park, D. S. Tran, and S. K. Kim, "Facile fabrication of amorphous NiMo catalysts for alkaline hydrogen oxidation reaction," Journal of Industrial and Engineering Chemistry, 2020.
[76] W.-B. Kim, C.-G. Lee, J.-C. Lee, and C.-Y. Seo, "Effect of Current Density on the Crystal Structure of Ni-W Alloys Prepared by Electrodeposition," Korean Journal of Materials Research, vol. 8, no. 10, pp. 898-904, 1998.
[77] M. Manazoğlu, G. Hapçı, and G. Orhan, "Electrochemical Deposition and Characterization of Ni-Mo Alloys as Cathode for Alkaline Water Electrolysis," Journal of Materials Engineering and Performance, vol. 25, no. 1, pp. 130-137, 2016/01/01 2016.
[78] M. Ábel, J. Záchenská, E. Dobročka, and M. Zemanová, "Electrocatalytic properties of pulse plated Ni-W alloy coatings in alkaline electrolytes," Transactions of the IMF, vol. 99, no. 1, pp. 23-28, 2021/01/02 2021.
[79] Z. Zhang, Y. Wu, and D. Zhang, "Potentiostatic electrodeposition of cost-effective and efficient Ni–Fe electrocatalysts on Ni foam for the alkaline hydrogen evolution reaction," International Journal of Hydrogen Energy, vol. 47, no. 3, pp. 1425-1434, 2022/01/08/ 2022.
[80] R. Solmaz, A. Döner, and G. Kardaş, "Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction," Electrochemistry Communications, vol. 10, no. 12, pp. 1909-1911, 2008/12/01/ 2008.
[81] M. Li, H. Wang, W. Zhu, W. Li, C. Wang, and X. Lu, "RuNi Nanoparticles Embedded in N-Doped Carbon Nanofibers as a Robust Bifunctional Catalyst for Efficient Overall Water Splitting," Advanced Science, vol. 7, no. 2, p. 1901833, 2020/01/01 2020.
[82] 莊東漢, 材料破損分析. 五南圖書出版股份有限公司, 2009.
[83] K. Zeng and D. Zhang, "Recent progress in alkaline water electrolysis for hydrogen production and applications," Progress in energy and combustion science, vol. 36, no. 3, pp. 307-326, 2010.
[84] S. Gutić et al., "Simple routes for the improvement of hydrogen evolution activity of Ni-Mo catalysts: From sol-gel derived powder catalysts to graphene supported co-electrodeposits," International Journal of Hydrogen Energy, vol. 43, no. 35, pp. 16846-16858, 2018.
[85] D. Harvey, Modern analytical chemistry. McGraw-Hill New York, 2000.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2022-9-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明