博碩士論文 108323105 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.221.208.183
姓名 廖恩逸(En-Yi Liao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性
(Using low-damaged plasma modification to improve the electrical transport properties of MoS2-based transistors)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究★ 石墨烯之複合電極於全固態纖維式微型超電容的研究
★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究
★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究
★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容
★ 懸空石墨烯之特性研究與應用★ 結合分子臨場吸附與電化學剝離法製備高品質石墨烯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 矽基電晶體近年來隨著尺寸微縮,伴隨而來的是散熱、漏電流、高功耗及高接觸阻抗等問題,特別是當體厚度小於5 nm時,矽的電傳輸特性發生劣化,如載子遷移率(Carrier mobility)會急遽的降低。而二維(Two-dimensional, 2D)材料由於表面沒有懸鍵、厚度僅有幾個原子層,且遷移率不隨厚度變化而影響等優點,被視為下世代的電子元件材料,其中又以過渡金屬硫屬化合物(Transition metal dichalcogenides, TMDCs)因具有可調控的能隙及優異的電性而備受關注。然而二維電晶體的應用上,受到費米能階釘扎(Fermi-level pinning)的影響,造成調整不同功函數之接觸金屬,皆無法有效降低其接觸阻抗,因而出現如凡德瓦接觸(Van der Waals contacts)、邊接觸(Edge contacts)、摻雜(Doping)、相位工程(Phase engineering)以及嵌入緩衝層(Inserting buffer layer)等方式以改善,然而,這些方式大多都具有不穩定及無法工業製造、相容現有製程等問題。
因此,本研究提出了一種透過氫電漿剝除二硫化鉬(MoS2)表面硫(S)原子層,使鉬(Mo)原子層裸露出來,接著沉積金屬電極,以形成金屬-金屬接觸(Metal-metal contact)以改善接觸阻抗。透過拉曼(Raman)、光致發光(Photoluminescene, PL)光譜,可以觀察到MoS2兩個特徵峰E2g與A1g消失,且不是相轉變,而從X射線光電子能譜儀(X-ray photoelectron spectroscope, XPS)的定量分析,可以觀察到S/Mo由原先1.69下降到1.25,證實S原子有被剝除。
元件的製備則是先比較了濕式與乾式轉印方式的差異,藉由光學影像以及原子力顯微鏡(Atomic force microscope, AFM)形貌分析可以得知表面完整性大約是一樣(98.5%),而表面潔淨度的比較則是乾式轉印(95.7%)較濕式轉印(93.2%)佳,因此選擇轉印品質較優秀的乾式轉印作為後續元件應用上的製備手法。電性表現方面,電漿處理後的元件與未改質的相比,其開電流與遷移率分別有10及6倍以上的提升,且在經過150C的退火後,金屬電極與金屬Mo原子的接觸會更好,其開電流與遷移率可以有4倍以上的提升,驗證了本方法可改善二維材料金屬接觸而提升電晶體整體電傳輸特性。
摘要(英) The size of silicon-based transistors has been scaling down in recent years, causing problems such as heat dissipation, leakage current, high power consumption, and high contact resistance, especially, when the thickness of silicon is less than 5 nm, the carrier mobility of silicon will decrease rapidly. Two-dimensional (2D) materials are regarded as the next-generation electronic device materials due to their advantages such as no dangling bonds on the surface, only a few atomic layers in thickness, and the mobility is not affected by changes in thickness. Among 2D materials, transition metal dichalcogenides (TMDCs) have attracted much attention due to their tunable energy gap and excellent electrical properties. However, in the application of 2D transistors, due to the effect of Fermi-level pinning, the contact resistance can not decrease by adjusting the contact metals of different work functions. In order to improve contact resistance, there are some methods have been reported, such as van der Waals contacts, edge contacts, doping, phase engineering, and inserting buffer layer et al., but most of these methods are unstable and can not be directly applied in IC industry.
Therefore, this study proposes a method by using hydrogen plasma to strip sulfur (S) atoms on the surface of molybdenum disulfide (MoS2) in order to expose the molybdenum (Mo) atoms and then deposit metal electrodes to form metal-metal atomic conjugation for improving the contact resistance. The characterizations through the Raman and photoluminescence (PL) spectrum, it could be observed that the two characteristic peaks of E2g and A1g of MoS2 are disappeared, and no phase transition. With the quantitative analysis of the X-ray photoelectron spectroscope (XPS), it could be observed that S/Mo decreased from 1.69 to 1.25, confirming that the S atoms have been successfully stripped.
The devices are compared to the differences between wet and dry transfer methods, through the morphology analysis of the optical image and atomic force microscope (AFM), it could be known that the surface integrity is the same (98.5%), and the surface cleanliness is shown that dry transfer (95.7%) is better than wet transfer (93.2%). Therefore, the dry transfer method with better transfer quality is selected as the preparation method for subsequent device applications. In terms of the electrical performance, compared with the non-plasma treated device, the on-current and mobility of the plasma-treated device are increased by more than 10 and 6 times, respectively. After annealing at 150C, the contact between the metal electrodes and Mo atoms would be better, and its on-current and mobility could be improved by more than 4 times, which confirms the feasibility of this method.
關鍵字(中) ★ 過渡金屬硫屬化合物
★ 二硫化鉬
★ 電傳輸特性
關鍵字(英) ★ Transition metal dichalcogenides, TMDCs
★ MoS2
★ electrical transport properties
論文目次 學位論文授權書 I
學位論文延後公開申請書 II
指導教授推薦信 III
口試委員審定書 IV
中文摘要 V
Abstract VII
誌謝 IX
目錄 X
圖目錄 XII
表目錄 XV
第一章 緒論 1
第二章 文獻回顧 3
2-1 二維材料的發展與應用 3
2-1-1 石墨烯 3
2-1-2 六方氮化硼(Hexagonal boron nitride, h-BN) 4
2-1-3 過渡金屬硫屬化合物(Transition metal dichalcogenides, TMDCs) 5
2-1-4 單元素材料(Monoelemental materials, Xenes) 8
2-2 二硫化鉬的材料特性及分析 9
2-2-1 材料結構 9
2-2-2 材料特性及分析 12
2-3 二維TMDCs材料於大面積轉印上面臨的困境 15
2-4 二硫化鉬等二維材料於接觸阻抗上面臨的困境 16
2-4-1 費米能階釘扎效應(Fermi-level pinning effect) 16
2-4-2 改善接觸阻抗之方法 17
第三章 研究動機 25
3-1 大面積TMDCs薄膜之乾式轉印 25
3-2 低損傷電漿處理以調制TMDCs材料之電性 26
第四章 研究架構與流程 29
4-1 研究架構與實驗方法 29
4-2 實驗藥品及儀器 30
4-2-1 實驗藥品 30
4-2-2 實驗及分析儀器 32
4-3 濕式與乾式轉印流程 33
4-3-1 濕式轉印流程 34
4-3-2 超音波輔助乾式轉印流程 34
4-4 元件製作流程 35
4-5 二硫化鉬之電漿處理之設備與製程 36
第五章 結果與討論 38
5-1 超音波輔助乾式轉印方式 38
5-1-1 形貌分析 38
5-1-2 物性分析 39
5-2 低損傷電漿於獲得Janus 2D材料的製程優化討論 40
5-3 電漿處理於二硫化鉬之材料特性分析 42
5-4 電漿處理對於電晶體之特性研究 47
5-4-1 不同通道尺寸的電晶體特性影響 49
5-4-2 退火溫度對元件電性之優化 52
第六章 結論 56
未來工作 57
參考文獻 58
參考文獻 1. Theis Thomas, N. and M. Solomon Paul, It’s Time to Reinvent the Transistor! Science, 2010. 327(5973): p. 1600-1601.
2. Li, H., J.K. Huang, Y. Shi and L.J.J.A.M.I. Li, Toward the growth of high mobility 2D transition metal dichalcogenide semiconductors. Advanced Materials Interfaces, 2019. 6(24): p. 1900220.
3. Moore, M., International Roadmap for Devices and Systems (IRDS) 2020 update (IEEE, 2020).
4. Liu, Y., X. Duan, H.-J. Shin, S. Park, Y. Huang and X. Duan, Promises and prospects of two-dimensional transistors. Nature, 2021. 591(7848): p. 43-53.
5. Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
6. Novoselov, K.S., D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov and A.K. Geim, Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 2005. 102(30): p. 10451-10453.
7. Fiori, G., F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee and L. Colombo, Electronics based on two-dimensional materials. Nature Nanotechnology, 2014. 9(10): p. 768-779.
8. Shen, P.C., Y. Lin, H. Wang, J.H. Park, W.S. Leong, A.Y. Lu, T. Palacios and J. Kong, CVD Technology for 2-D Materials. IEEE Transactions on Electron Devices, 2018. 65(10): p. 4040-4052.
9. Zhu, Y., S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 2010. 22(35): p. 3906-3924.
10. Peña-Bahamonde, J., H.N. Nguyen, S.K. Fanourakis and D.F. Rodrigues, Recent advances in graphene-based biosensor technology with applications in life sciences. Journal of Nanobiotechnology, 2018. 16(1): p. 75.
11. Wei, W., J. Nong, G. Zhang, L. Tang, X. Jiang, N. Chen, S. Luo, G. Lan and Y. Zhu, Graphene-Based Long-Period Fiber Grating Surface Plasmon Resonance Sensor for High-Sensitivity Gas Sensing. Sensors, 2017. 17(1): p. 2.
12. Tian, W., X. Liu and W. Yu, Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review. Applied Sciences, 2018. 8(7): p. 1118.
13. Sun, J., Z. Chen, L. Yuan, Y. Chen, J. Ning, S. Liu, D. Ma, X. Song, M.K. Priydarshi, A. Bachmatiuk, M.H. Rümmeli, T. Ma, L. Zhi, L. Huang, Y. Zhang and Z. Liu, Direct Chemical-Vapor-Deposition-Fabricated, Large-Scale Graphene Glass with High Carrier Mobility and Uniformity for Touch Panel Applications. ACS Nano, 2016. 10(12): p. 11136-11144.
14. Ma, Y. and L. Zhi, Graphene-Based Transparent Conductive Films: Material Systems, Preparation and Applications. Small Methods, 2019. 3(1): p. 1800199.
15. Schwierz, F., Graphene transistors. Nature Nanotechnology, 2010. 5(7): p. 487-496.
16. Schwierz, F., Graphene Transistors: Status, Prospects, and Problems. Proceedings of the IEEE, 2013. 101(7): p. 1567-1584.
17. Rai, A., H.C.P. Movva, A. Roy, D. Taneja, S. Chowdhury and S.K. Banerjee, Progress in Contact, Doping and Mobility Engineering of MoS2: An Atomically Thin 2D Semiconductor. Crystals, 2018. 8(8).
18. Ba, K., W. Jiang, J. Cheng, J. Bao, N. Xuan, Y. Sun, B. Liu, A. Xie, S. Wu and Z. Sun, Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride. Scientific Reports, 2017. 7(1): p. 45584.
19. Han, Z., M. Li, L. Li, F. Jiao, Z. Wei, D. Geng and W. Hu, When graphene meets white graphene – recent advances in the construction of graphene and h-BN heterostructures. Nanoscale, 2021. 13(31): p. 13174-13194.
20. Dean, C.R., A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard and J. Hone, Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010. 5(10): p. 722-726.
21. Kim, K.K., A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Dresselhaus, T. Palacios and J. Kong, Synthesis and Characterization of Hexagonal Boron Nitride Film as a Dielectric Layer for Graphene Devices. ACS Nano, 2012. 6(10): p. 8583-8590.
22. Yan, A., J. Velasco, S. Kahn, K. Watanabe, T. Taniguchi, F. Wang, M.F. Crommie and A. Zettl, Direct Growth of Single- and Few-Layer MoS2 on h-BN with Preferred Relative Rotation Angles. Nano Letters, 2015. 15(10): p. 6324-6331.
23. Fu, L., Y. Sun, N. Wu, R.G. Mendes, L. Chen, Z. Xu, T. Zhang, M.H. Rümmeli, B. Rellinghaus, D. Pohl, L. Zhuang and L. Fu, Direct Growth of MoS2/h-BN Heterostructures via a Sulfide-Resistant Alloy. ACS Nano, 2016. 10(2): p. 2063-2070.
24. Han, S.A., R. Bhatia and S.-W. Kim, Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Convergence, 2015. 2(1): p. 17.
25. Chhowalla, M., H.S. Shin, G. Eda, L.-J. Li, K.P. Loh and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013. 5(4): p. 263-275.
26. Radisavljevic, B., A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Single-layer MoS2 transistors. Nature Nanotechnology, 2011. 6(3): p. 147-150.
27. Lv, R., J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun, T.E. Mallouk and M. Terrones, Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Accounts of Chemical Research, 2015. 48(1): p. 56-64.
28. Choudhary, N., M. Patel, Y.-H. Ho, N.B. Dahotre, W. Lee, J.Y. Hwang and W. Choi, Directly deposited MoS2 thin film electrodes for high performance supercapacitors. Journal of Materials Chemistry A, 2015. 3(47): p. 24049-24054.
29. Liu, Y., L. Zhang, Y. Zhao, T. Shen, X. Yan, C. Yu, H. Wang and H. Zeng, Novel plasma-engineered MoS2 nanosheets for superior lithium-ion batteries. Journal of Alloys and Compounds, 2019. 787: p. 996-1003.
30. Tao, L., X. Duan, C. Wang, X. Duan and S. Wang, Plasma-engineered MoS2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction. Chemical Communications, 2015. 51(35): p. 7470-7473.
31. Sarkar, D., W. Liu, X. Xie, A.C. Anselmo, S. Mitragotri and K. Banerjee, MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors. ACS Nano, 2014. 8(4): p. 3992-4003.
32. Li, H., Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D.W.H. Fam, A.I.Y. Tok, Q. Zhang and H. Zhang, Fabrication of Single- and Multilayer MoS2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature. Small, 2012. 8(1): p. 63-67.
33. Choi, W., N. Choudhary, G.H. Han, J. Park, D. Akinwande and Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116-130.
34. Gusakova, J., X. Wang, L.L. Shiau, A. Krivosheeva, V. Shaposhnikov, V. Borisenko, V. Gusakov and B.K. Tay, Electronic Properties of Bulk and Monolayer TMDs: Theoretical Study Within DFT Framework (GVJ-2e Method). physica status solidi (a), 2017. 214(12): p. 1700218.
35. Jang, J., Y. Kim, S.-S. Chee, H. Kim, D. Whang, G.-H. Kim and S.J. Yun, Clean Interface Contact Using a ZnO Interlayer for Low-Contact-Resistance MoS2 Transistors. ACS Applied Materials & Interfaces, 2020. 12(4): p. 5031-5039.
36. Wu, W., L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, J. Hone and Z.L. Wang, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014. 514(7523): p. 470-474.
37. Lin, S., X. Li, P. Wang, Z. Xu, S. Zhang, H. Zhong, Z. Wu, W. Xu and H. Chen, Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride. Scientific Reports, 2015. 5(1): p. 15103.
38. Radisavljevic, B., M.B. Whitwick and A. Kis, Integrated Circuits and Logic Operations Based on Single-Layer MoS2. ACS Nano, 2011. 5(12): p. 9934-9938.
39. Hwangbo, S., L. Hu, A.T. Hoang, J.Y. Choi and J.-H. Ahn, Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nature Nanotechnology, 2022. 17(5): p. 500-506.
40. Zhao, A. and B. Wang, Two-dimensional graphene-like Xenes as potential topological materials. APL Materials, 2020. 8(3): p. 030701.
41. Wang, T., H. Wang, Z. Kou, W. Liang, X. Luo, F. Verpoort, Y.-J. Zeng and H. Zhang, Xenes as an Emerging 2D Monoelemental Family: Fundamental Electrochemistry and Energy Applications. Advanced Functional Materials, 2020. 30(36): p. 2002885.
42. Pumera, M. and Z. Sofer, 2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus. Advanced Materials, 2017. 29(21): p. 1605299.
43. Zhang, S., S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gómez-Herrero, P. Ares, F. Zamora, Z. Zhu and H. Zeng, Recent progress in 2D group-VA semiconductors: from theory to experiment. Chemical Society Reviews, 2018. 47(3): p. 982-1021.
44. Gao, W., Z. Zheng, P. Wen, N. Huo and J. Li, Novel two-dimensional monoelemental and ternary materials: growth, physics and application. Nanophotonics, 2020. 9(8): p. 2147-2168.
45. Qiao, H., H. Liu, Z. Huang, R. Hu, Q. Ma, J. Zhong and X. Qi, Tunable Electronic and Optical Properties of 2D Monoelemental Materials Beyond Graphene for Promising Applications. ENERGY & ENVIRONMENTAL MATERIALS, 2021. 4(4): p. 522-543.
46. Pei, J., X. Gai, J. Yang, X. Wang, Z. Yu, D.-Y. Choi, B. Luther-Davies and Y. Lu, Producing air-stable monolayers of phosphorene and their defect engineering. Nature Communications, 2016. 7(1): p. 10450.
47. Wang, H., Z. Lu, D. Kong, J. Sun, T.M. Hymel and Y. Cui, Electrochemical Tuning of MoS2 Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution. ACS Nano, 2014. 8(5): p. 4940-4947.
48. Zhu, J., Z. Wang, H. Yu, N. Li, J. Zhang, J. Meng, M. Liao, J. Zhao, X. Lu, L. Du, R. Yang, D. Shi, Y. Jiang and G. Zhang, Argon Plasma Induced Phase Transition in Monolayer MoS2. Journal of the American Chemical Society, 2017. 139(30): p. 10216-10219.
49. Lu, A.-Y., H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D.A. Muller, M.-Y. Chou, X. Zhang and L.-J. Li, Janus monolayers of transition metal dichalcogenides. Nature Nanotechnology, 2017. 12(8): p. 744-749.
50. Zhang, J., S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V.B. Shenoy, L. Shi and J. Lou, Janus Monolayer Transition-Metal Dichalcogenides. ACS Nano, 2017. 11(8): p. 8192-8198.
51. Tang, X. and L. Kou, 2D Janus Transition Metal Dichalcogenides: Properties and Applications. physica status solidi (b), 2022. 259(4): p. 2100562.
52. Iqbal, M.W., K. Shahzad, R. Akbar and G.J.M.E. Hussain, A review on Raman finger prints of doping and strain effect in TMDCs. Microelectronic Engineering, 2020. 219: p. 111152.
53. Watson, A.J., W. Lu, M.H.D. Guimarães and M. Stöhr, Transfer of large-scale two-dimensional semiconductors: challenges and developments. 2D Materials, 2021. 8(3): p. 032001.
54. Lee, C., H. Yan, L.E. Brus, T.F. Heinz, J. Hone and S. Ryu, Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano, 2010. 4(5): p. 2695-2700.
55. Bissett, M.A., M. Tsuji and H.J.P.C.C.P. Ago, Strain engineering the properties of graphene and other two-dimensional crystals. Physical Chemistry Chemical Physics, 2014. 16(23): p. 11124-11138.
56. Li, M., J. Yao, Y. Liu, X. Wu, Y. Yu, B. Xing, X. Yan, W. Guo, M. Tan, J. Sha and Y. Wang, Air stable and reversible n-type surface functionalization of MoS2 monolayer using Arg and Lys amino acids. Journal of Materials Chemistry C, 2020. 8(35): p. 12181-12188.
57. Shi, Y., J.-K. Huang, L. Jin, Y.-T. Hsu, S.F. Yu, L.-J. Li and H.Y. Yang, Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals. Scientific Reports, 2013. 3(1): p. 1839.
58. Mouri, S., Y. Miyauchi and K. Matsuda, Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping. Nano Letters, 2013. 13(12): p. 5944-5948.
59. Liu, Z., M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A.G. Birdwell, F.J. Crowne, R. Vajtai, B.I. Yakobson, Z. Xia, M. Dubey, P.M. Ajayan and J. Lou, Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nature Communications, 2014. 5(1): p. 5246.
60. Yang, B., M. Lohmann, D. Barroso, I. Liao, Z. Lin, Y. Liu, L. Bartels, K. Watanabe, T. Taniguchi and J.J.P.R.B. Shi, Strong electron-hole symmetric Rashba spin-orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures. Physical Review B, 2017. 96(4): p. 041409.
61. Chen, J., X. Zhao, S.J.R. Tan, H. Xu, B. Wu, B. Liu, D. Fu, W. Fu, D. Geng, Y. Liu, W. Liu, W. Tang, L. Li, W. Zhou, T.C. Sum and K.P. Loh, Chemical Vapor Deposition of Large-Size Monolayer MoSe2 Crystals on Molten Glass. Journal of the American Chemical Society, 2017. 139(3): p. 1073-1076.
62. Dumcenco, D., D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O.L. Sanchez, Y.-C. Kung, D. Krasnozhon, M.-W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Radenovic and A. Kis, Large-Area Epitaxial Monolayer MoS2. ACS Nano, 2015. 9(4): p. 4611-4620.
63. Gao, Y., Z. Liu, D.-M. Sun, L. Huang, L.-P. Ma, L.-C. Yin, T. Ma, Z. Zhang, X.-L. Ma, L.-M. Peng, H.-M. Cheng and W. Ren, Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nature Communications, 2015. 6(1): p. 8569.
64. Phan, H.D., Y. Kim, J. Lee, R. Liu, Y. Choi, J.H. Cho and C. Lee, Ultraclean and Direct Transfer of a Wafer-Scale MoS2 Thin Film onto a Plastic Substrate. Advanced Materials, 2017. 29(7): p. 1603928.
65. Durán Retamal, J.R., D. Periyanagounder, J.-J. Ke, M.-L. Tsai and J.-H. He, Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides. Chemical Science, 2018. 9(40): p. 7727-7745.
66. Zheng, Y., J. Gao, C. Han and W. Chen, Ohmic Contact Engineering for Two-Dimensional Materials. Cell Reports Physical Science, 2021. 2(1): p. 100298.
67. Liu, Y., J. Guo, E. Zhu, L. Liao, S.-J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang and X. Duan, Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature, 2018. 557(7707): p. 696-700.
68. Chen, R.-S., G. Ding, Y. Zhou and S.-T. Han, Fermi-level depinning of 2D transition metal dichalcogenide transistors. Journal of Materials Chemistry C, 2021. 9(35): p. 11407-11427.
69. Zhao, M., Y. Ye, Y. Han, Y. Xia, H. Zhu, S. Wang, Y. Wang, D.A. Muller and X. Zhang, Large-scale chemical assembly of atomically thin transistors and circuits. Nature Nanotechnology, 2016. 11(11): p. 954-959.
70. Cheng, Z., Y. Yu, S. Singh, K. Price, S.G. Noyce, Y.-C. Lin, L. Cao and A.D. Franklin, Immunity to Contact Scaling in MoS2 Transistors Using in Situ Edge Contacts. Nano Letters, 2019. 19(8): p. 5077-5085.
71. Kappera, R., D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite and M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nature Materials, 2014. 13(12): p. 1128-1134.
72. Eda, G., H. Yamaguchi, D. Voiry, T. Fujita, M. Chen and M. Chhowalla, Photoluminescence from Chemically Exfoliated MoS2. Nano Letters, 2011. 11(12): p. 5111-5116.
73. Rai, A., A. Valsaraj, H.C.P. Movva, A. Roy, R. Ghosh, S. Sonde, S. Kang, J. Chang, T. Trivedi, R. Dey, S. Guchhait, S. Larentis, L.F. Register, E. Tutuc and S.K. Banerjee, Air Stable Doping and Intrinsic Mobility Enhancement in Monolayer Molybdenum Disulfide by Amorphous Titanium Suboxide Encapsulation. Nano Letters, 2015. 15(7): p. 4329-4336.
74. Kiriya, D., M. Tosun, P. Zhao, J.S. Kang and A. Javey, Air-Stable Surface Charge Transfer Doping of MoS2 by Benzyl Viologen. Journal of the American Chemical Society, 2014. 136(22): p. 7853-7856.
75. Wang, Y., J.C. Kim, R.J. Wu, J. Martinez, X. Song, J. Yang, F. Zhao, A. Mkhoyan, H.Y. Jeong and M. Chhowalla, Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature, 2019. 568(7750): p. 70-74.
76. Kaushik, N., D. Karmakar, A. Nipane, S. Karande and S. Lodha, Interfacial n-Doping Using an Ultrathin TiO2 Layer for Contact Resistance Reduction in MoS2. ACS Applied Materials & Interfaces, 2016. 8(1): p. 256-263.
77. Gurarslan, A., Y. Yu, L. Su, Y. Yu, F. Suarez, S. Yao, Y. Zhu, M. Ozturk, Y. Zhang and L.J.A.n. Cao, Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. 2014. 8(11): p. 11522-11528.
78. Yu, H., M. Liao, W. Zhao, G. Liu, X.J. Zhou, Z. Wei, X. Xu, K. Liu, Z. Hu, K. Deng, S. Zhou, J.-A. Shi, L. Gu, C. Shen, T. Zhang, L. Du, L. Xie, J. Zhu, W. Chen, R. Yang, D. Shi and G. Zhang, Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS2 Continuous Films. ACS Nano, 2017. 11(12): p. 12001-12007.
79. Ma, D., J. Shi, Q. Ji, K. Chen, J. Yin, Y. Lin, Y. Zhang, M. Liu, Q. Feng, X. Song, X. Guo, J. Zhang, Y. Zhang and Z. Liu, A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Research, 2015. 8(11): p. 3662-3672.
80. Lin, Z., Y. Zhao, C. Zhou, R. Zhong, X. Wang, Y.H. Tsang and Y. Chai, Controllable Growth of Large–Size Crystalline MoS2 and Resist-Free Transfer Assisted with a Cu Thin Film. Scientific Reports, 2015. 5(1): p. 18596.
81. Nan, H., R. Zhou, X. Gu, S. Xiao and K. Ostrikov, Recent advances in plasma modification of 2D transition metal dichalcogenides. Nanoscale, 2019. 11(41): p. 19202-19213.
82. Wan, X., E. Chen, J. Yao, M. Gao, X. Miao, S. Wang, Y. Gu, S. Xiao, R. Zhan, K. Chen, Z. Chen, X. Zeng, X. Gu and J. Xu, Synthesis and Characterization of Metallic Janus MoSH Monolayer. ACS Nano, 2021. 15(12): p. 20319-20331.
83. Guo, Y., Y. Lin, K. Xie, B. Yuan, J. Zhu, P.-C. Shen, A.-Y. Lu, C. Su, E. Shi, K. Zhang, C. HuangFu, H. Xu, Z. Cai, J.-H. Park, Q. Ji, J. Wang, X. Dai, X. Tian, S. Huang, L. Dou, L. Jiao, J. Li, Y. Yu, J.-C. Idrobo, T. Cao, T. Palacios and J. Kong, Designing artificial two-dimensional landscapes via atomic-layer substitution. Proceedings of the National Academy of Sciences, 2021. 118(32): p. e2106124118.
84. Sharma, I., Y. Batra and B.R. Mehta, Spectroscopic ellipsometry, photoluminescence and Kelvin probe force microscopy studies of CdSe nanoparticles dispersed on ZnS thin film. Journal of Applied Physics, 2015. 117(24): p. 245310.
85. Kumar, A., R. Kapoor, M. Garg, V. Kumar and R. Singh, Direct evidence of barrier inhomogeneities at metal/AlGaN/GaN interfaces using nanoscopic electrical characterizations. Nanotechnology, 2017. 28(26): p. 26LT02.
86. Sharma, I. and B.R. Mehta, Optical properties and band alignments in ZnTe nanoparticles/MoS<sub>2</sub>layer hetero-interface using SE and KPFM studies. Nanotechnology, 2017. 28(44): p. 445701.
87. DeJarld, M., P.M. Campbell, A.L. Friedman, M. Currie, R.L. Myers-Ward, A.K. Boyd, S.G. Rosenberg, S.P. Pavunny, K.M. Daniels and D.K. Gaskill, Surface potential and thin film quality of low work function metals on epitaxial graphene. Scientific Reports, 2018. 8(1): p. 16487.
88. Choi, S., Z. Shaolin and W. Yang, Layer-number-dependent work function of MoS2 nanoflakes. Journal of the Korean Physical Society, 2014. 64(10): p. 1550-1555.
89. Kumar, A., A. Tang, H.S.P. Wong and K. Saraswat. Improved Contacts to Synthetic Monolayer MoS2 – A Statistical Study. in 2021 IEEE International Interconnect Technology Conference (IITC). 2021.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2022-9-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明