博碩士論文 109323002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.149.230.209
姓名 曾瀚緯(Han-Wei Tseng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 精密鑄造中殼模厚度和保溫棉對縮孔影響的預測—以316L不銹鋼流量計之缺陷改善為例
(Effect of shell mold thickness and insulating wool pattern on internal porosity in investment casting of vortex flow meter)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-16以後開放)
摘要(中) 在這項研究中,研究了具有不同保溫棉方案和殼模厚度的精密鑄造 (IC) 用於幾何復雜的渦流流量計。殼模面漿由鋯石 (ZrSiO4) 和膠狀二氧化矽 (SiO2) 接著劑組成。鋯砂因其化學穩定性、較高溫度下的抗斷裂性和較低的熱膨脹係數而被認為是一種有潛力的高溫應用工程材料。通過實驗驗證了殼模的基本性能,如機械性質和熱性質。發現斷裂模量為5.6±0.5MPa。傳熱係數 (HTC) 計算為在 600-900 W/(m2 K) 範圍內。後來作為軟體模擬的資料庫輸入。此外,使用電腦輔助工程 (CAE) 方法和測試,該研究調查了不同層數和保溫棉方案的熱性質是否會影響鑄造缺陷的形成。CAE 模擬顯示初始層數方案會導致管壁問題。為了減少熱點區域,第一步是採用不同的保溫棉方案,這可以將縮孔形成的概率降低 17%,第二步是增加模殼的厚度以減少熱點形成的百分比。經計算後,最優化設計可使縮孔形成的概率降低 47%。通過改變殼模的厚度,不同的熱性質可以顯著減少批量生產的渦流流量計的鑄造缺陷。在這項研究中,渦流流量計改進的最佳解決方案已被鑄造廠採用並量產,而後X光檢測在渦流流量計管壁常有缺陷的地方,結果判定為無缺陷,驗證了保溫改進方案的效果和可行性。
摘要(英) Investment casting (IC) with different insulating wool pattern and shell mold thickness is investigated for a geometrically complex vortex flow meter in this study. The primary coating consists of zircon (ZrSiO4) with colloidal silica (SiO2) binder. Zircon is regarded as a potential engineering material for high-temperature applications for its chemical stability, strong fracture resistance at higher temperatures, and low thermal expansion coefficient. The fundamental properties of the shell mold, such as mechanical property and thermal properties were experimentally validated. The modulus of rupture was found to be 5.6±0.5MPa. The Heat transfer coefficients (HTC) was calculated to be in the range of 600-900 W/(m2 K). Later as the input data for numerical simulation. In addition, using a computer-aided numerical (CAE) approach and tests, this research investigated whether the thermal properties of varied layer thicknesses and insulating wool patterns may impact the formation of casting defects. The CAE simulation reveals that the initial layer thickness would result in pipe wall problems. To lessen the hot spot region, the first step is to employ different insulating wool patterns, which could reduce the probability of shrinkage forming by 17%. The second step is to increase the thickness of the mold shell to reduce the percentage of hot spots. It is calculated that the optimal design would reduce the probability of shrinkage forming by 47%. The varying thermal properties may significantly decrease the casting faults of a mass-produced vortex flow meter by altering the thickness of the shell mold. In this study, the best solution for vortex flow meter process improvement has been adopted by an IC foundry and mass-produced. The X ray inspection shows flawless results in the vortex flow meter pipe wall where defects often form, and proves the effect and feasibility of the thermal insulation improvement proposal.
關鍵字(中) ★ 電腦輔助工程
★ 316L不鏽鋼
★ 殼模層數
★ 縮孔
★ 精密鑄造
★ 渦流流量計
關鍵字(英)
論文目次 摘 要 I
Abstract III
誌 謝 V
圖目錄 IX
表目錄 XII
第一章:緒論 1
1-1 前言 1
1-2 研究動機與方法 4
第二章:文獻回顧 6
2-1 精密鑄造 6
2-2 電腦輔助工程 6
2-3 鑄造缺陷的預測和數據分析 7
第三章:材料與實驗設置 9
3-1 實驗設備 9
第四章:工業閥件錶體模擬結果與探討 16
4-1 緒論 16
4-1-1 鑄件基本資料與常見缺陷 16
4-1-2 初始鑄造組樹方案與基本參數 19
4-2 殼模的機械性質與成分分析 22
4-2-1 殼模機械性質 22
4-2-1 EDS成分分析 24
4-3 熱性質現場數據收集與資料庫建置 26
4-4 各鑄造組樹方案之模擬結果 33
4-5 試鑄與實際生產狀況 43
4-5-1 螢光檢驗判定缺陷 43
4-6 渦流流量計鑄件開發之結論 49
第五章:結論 50
參考文獻 52
參考文獻 [1] N. O’Sullivan, J. Mooney, and D. Tanner, "Enhancing permeability and porosity of ceramic shells for investment casting through pre-wetting," Journal of the European Ceramic Society, vol. 41, no. 16, pp. 411-422, 2021, doi: 10.1016/j.jeurceramsoc.2021.09.022.
[2] T. R. Vijayaram, S. Sulaiman, A. Hamouda, and M. Ahmad, "Numerical simulation of casting solidification in permanent metallic molds," Journal of materials processing technology, vol. 178, no. 1-3, pp. 29-33, 2006.
[3] P.-H. Huang, L. K.-L. Shih, H.-M. Lin, C.-I. Chu, and C.-S. Chou, "Novel approach to investment casting of heat-resistant steel turbine blades for aircraft engines," The International Journal of Advanced Manufacturing Technology, vol. 104, no. 5-8, pp. 2911-2923, 2019, doi: 10.1007/s00170-019-04178-z.
[4] X. Zhi, Y. Han, and X. Yuan, "Casting process optimization for the impellor of 200ZJA slurry pump," The International Journal of Advanced Manufacturing Technology, vol. 77, no. 9, pp. 1703-1710, 2015.
[5] P.-H. Huang, Y.-T. Chen, and B.-T. Wang, "An effective method for separating casting components from the runner system using vibration-induced fatigue damage," The International Journal of Advanced Manufacturing Technology, vol. 74, no. 9, pp. 1275-1282, 2014.
[6] Y. Hou, Z. Cheng, W. Feng, and B. Liu, "Using Procast to forecast and analysis of the shrinkage porosity and its technical optimization swaminathan," China Water Transport, vol. 7, no. 3, pp. 67-69, 2007.
[7] P. H. Huang, W. J. Wu, and C. H. Shieh, "Compute-aided design of low pressure die-casting process of A356 aluminum wheels," in Applied Mechanics and Materials, 2017, vol. 864: Trans Tech Publ, pp. 173-178.
[8] Y. Dong, X. Li, Q. Zhao, J. Yang, and M. Dao, "Modeling of shrinkage during investment casting of thin-walled hollow turbine blades," Journal of Materials Processing Technology, vol. 244, pp. 190-203, 2017.
[9] D. Wang, J. Sun, A. Dong, D. Shu, G. Zhu, and B. Sun, "An optimization method of gating system for impeller by RSM and simulation in investment casting," The International Journal of Advanced Manufacturing Technology, vol. 98, no. 9-12, pp. 3105-3114, 2018, doi: 10.1007/s00170-018-2474-z.
[10] Y. C. Kao et al., "Computer-aided engineering (CAE) simulation for the robust gating system design: Improved process for investment casting defects of 316L stainless steel valve housing," International Journal of Metalcasting, pp. 1-19, 2022.
[11] Z. Wang, J. Wang, L. Yu, J. Wu, M. Wang, and B. Su, "Numerical simulation and process optimization of vacuum investment casting for Be–Al alloys," International Journal of Metalcasting, vol. 13, no. 1, pp. 74-81, 2019.
[12] J. Sun et al., "Gas entrainment behavior of aluminum alloy engine crankcases during the low-pressure-die-casting process," Journal of Materials Processing Technology, vol. 266, pp. 274-282, 2019.
[13] D. Li, J. Campbell, and Y. Li, "Filling system for investment cast Ni-base turbine blades," Journal of materials processing technology, vol. 148, no. 3, pp. 310-316, 2004.
[14] B. Hu, K. Tong, X. P. Niu, and I. Pinwill, "Design and optimisation of runner and gating systems for the die casting of thin-walled magnesium telecommunication parts through numerical simulation," Journal of Materials Processing Technology, vol. 105, no. 1-2, pp. 128-133, 2000.
[15] X.-P. Zhang, G. Chen, S.-M. Xiong, and Q.-Y. Xu, "Computer simulation of the solidification of cast titanium dental prostheses," Journal of materials science, vol. 40, no. 18, pp. 4911-4916, 2005.
[16] H.-J. Kwon and H.-K. Kwon, "Computer aided engineering (CAE) simulation for the design optimization of gate system on high pressure die casting (HPDC) process," Robotics and Computer-Integrated Manufacturing, vol. 55, pp. 147-153, 2019.
[17] E.-S. Kim, J.-Y. Park, Y.-H. Kim, G.-M. Son, and K.-H. Lee, "Evaluation of diecasting mold cooling ability by decompression cooling system," Journal of Korea Foundry Society, vol. 29, no. 5, pp. 238-243, 2009.
[18] J. Zheng, B. Huang, and X. Zhou, "A low carbon process design method of sand casting based on process design parameters," Journal of Cleaner Production, vol. 197, pp. 1408-1422, 2018.
[19] M. Xu, S. N. Lekakh, and V. L. Richards, "Thermal Property Database for Investment Casting Shells," International Journal of Metalcasting, vol. 10, no. 3, pp. 329-337, 2016, doi: 10.1007/s40962-016-0052-4.
[20] P.-H. Huang, C.-Y. Cheng, W.-J. Huang, and C.-S. Chou, "Optimal design of investment casting system for toothed chain joint: computer simulations and experimental verification," The International Journal of Advanced Manufacturing Technology, vol. 106, no. 5-6, pp. 1931-1943, 2019, doi: 10.1007/s00170-019-04765-0.
[21] A. Sata and B. Ravi, "Bayesian inference-based investment-casting defect analysis system for industrial application," The International Journal of Advanced Manufacturing Technology, vol. 90, no. 9, pp. 3301-3315, 2017.
[22] Y. C. Kao et al., "Prediction of the Effect of Asymmetric Pouring Basin Geometry on Temperature, Internal Porosity in Tilt Casting Housing of Scroll Compressor," International Journal of Metalcasting, vol. 16, no. 2, pp. 613-621, 2022.
[23] R. Hardin, K. Choi, N. Gaul, and C. Beckermann, "Reliability based casting process design optimisation," International Journal of Cast Metals Research, vol. 28, no. 3, pp. 181-192, 2015.
[24] P. Pichler, B. J. Simonds, J. W. Sowards, and G. Pottlacher, "Measurements of thermophysical properties of solid and liquid NIST SRM 316L stainless steel," Journal of Materials Science, vol. 55, no. 9, pp. 4081-4093, 2020.
[25] Y. Miyata, M. Okugawa, Y. Koizumi, and T. Nakano, "Inverse columnar-equiaxed transition (CET) in 304 and 316L stainless steels melt by electron beam for additive manufacturing (AM)," Crystals, vol. 11, no. 8, p. 856, 2021.
[26] C. H. Konrad, M. Brunner, K. Kyrgyzbaev, R. Völkl, and U. Glatzel, "Determination of heat transfer coefficient and ceramic mold material parameters for alloy IN738LC investment castings," Journal of Materials Processing Technology, vol. 211, no. 2, pp. 181-186, 2011, doi: 10.1016/j.jmatprotec.2010.08.031.
[27] [Online]. Available: https://www.isolite.co.jp/products/rcf/isowool-blanket/.
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2022-9-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明